350 rub
Journal Radioengineering №1 for 2022 г.
Article in number:
Selection of algebraic methods for solving of the fiber-optical tomographic problem
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202201-04
UDC: 621.373.826:315.61
Authors:

I.V. Denisov, V.A. Sedov, N.A. Sedova, D.N. Piskun, A.V. Kiper

Abstract:

Statement of the problem. Algebraic methods of information processing and artificial intelligence systems are widely used for reconstruction of physical fields by means of fiber-optical measuring lines. The search of optimal computational architecture encounters the choice of those algorithms that are most effective for solving specific reconstructive problems with minimal costs and maximum quality. Currently, linear security equipment with slim depth of security zone are used for technical surface security systems. Meanwhile, for extended surfaces, it is possible to scale with simple fiber-optical measuring lines with output signals of which have certain patterns of changes.

Goal. Investigate algebraic computational methods and show the possibility of their application for solving of fiber-optical tomography problems on the simplest measuring networks configurations.

Results. The most promising algebraic methods for further development of processing information system for fiber-optical measuring networks designed for security of extended surfaces are identified.

Practical significance. Numerical estimates of the most promising algebraic algorithms for solving of fiber-optical reconstructive problems are obtained.

Pages: 21-27
For citation

Denisov I.V., Sedov V.A., Sedova N.A., Piskun D.N., Kiper A.V. Selection of algebraic methods for solving of the fiber-optical tomographic problem. Radiotekhnika. 2022. V. 86. № 1. P. 21−27. DOI: https://doi.org/10.18127/j00338486-202201-04 (In Russian)

References
  1. Kul'chin Ju.N. Raspredelennye volokonno-opticheskie izmeritel'nye sistemy. M.: Fizmatlit. 2001 (In Russian).
  2. Kulchin Yu., Vitrik O., Denisov I., et.al. Optical Memory & Neural Networks. 1997. V. 6. № 2.
  3. Denisov, I.V., Kiper A.V., Sedov V.A., et.al. Radioengineering. 2021. V. 85. № 2. (In Russian).
  4. Tereshhenko S.A. Metody vychislitel'noj tomografii. M.: Fizmatlit. 2004 (In Russian).
  5. Censor Ja. TIIJeR. 1983. T. 71. № 3 (In Russian).
  6. Herman G.T., Lent A. Computers in Biology and Medicine. 1976. V. 6 (In Russian).
  7. Beklemishev D.V. Dopolnitel'nye glavy linejnoj algebry. M.: Nauka. 1983 (In Russian).
  8. Faddeev D.K., Faddeeva V.N. Vychislitel'nye metody linejnoj algebry. SPb: Lan'. 2002 (In Russian).
  9. Amosov A.A., Dubinskij Ju.A., Kopchenova N.V. Vychislitel'nye metody dlja inzhenerov. M.: Vysshaja shkola. 1995 (In Russian).
  10. Demidovich B.P, Maron I.A. Osnovy vychislitel'noj matematiki. M.: Nauka. 1970 (In Russian).
  11. Ortega Dzh. Vvedenie v parallel'nye i vektornye metody reshenija linejnyh sistem. M.: Mir. 1991 (In Russian).
  12. Vishnjakov G.N., Mashevskaja O.I. Izmeritel'naja tehnika. 2005. № 8 (In Russian).
  13. Pissanecki S. Tehnologija razrezhennyh matric. M.: Mir. 1988 (In Russian).
Date of receipt: 14.11.2021
Approved after review: 18.11.2021
Accepted for publication: 14.12.2021