350 rub
Journal Radioengineering №8 for 2021 г.
Article in number:
Investigation of the convergence of the integration algorithm with the choice of the variable of integration at each step using the example of a Luneberg lens
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202108-08
UDC: 621.396
Authors:

K.I. Konov, K.N. Klimov

Moscow Aviation Institute (National Research University)

Abstract:

The paper describes an integration algorithm with a choice of a variable at each step in the numerical construction of ray trajectories in a medium with a given dependence of the permittivityon coordinates. The convergence of the calculations to the exact solution is estimated using the example of the problem of calculating the trajectories of rays in a Luneberg lens. It is shown that with a decrease in the grid step, convergence to the exact solution is observed.

Purpose. Assess the convergence to an exact solution of an integration algorithm with a choice of a variable at each step using the example of the problem of calculating ray trajectories in a Luneberg lens.

Results. The trajectories of rays incident parallel to the ordinate axis and the trajectories of rays incident at an angle to the ordinate axis are calculated. It is shown that with a decrease in the grid step, convergence of the results to the exact solution is observed. Practical significance. It is shown that an integration algorithm with a choice of a variable at each step provides the construction of ray trajectories with an error in the coordinate not exceeding the grid step for the problem of ray propagation in a Luneberg lens.

Pages: 69-79
For citation

Konov K.I., Klimov K.N. Investigation of the convergence of the integration algorithm with the choice of the variable of integration at each step using the example of a Luneberg lens. Radiotekhnika. 2021. V. 85. № 8. P. 69−79. DOI: https://doi.org/10.18127/j00338486202108-08 (In Russian)

References
  1. Bellman R. Teorija ustojchivosti reshenij differencial'nyh uravnenij. M.: IL. 1954. (In Russian).
  2. Kravcov A.Ju., Orlov Ju.I. Kaustiki, katastrofy i volnovye polja. UMN. 1983. T. 141. № 4. S. 591–627 (In Russian). 
  3. Litvinov O.S., Gorelik V.S. Jelektromagnitnye volny i optika. M.: MGTU im. N.Je. Baumana. 2006. 448 s. (In Russian).
  4. Tatarnikov D.V., Generalov A.A. Vognutye poluprozrachnye jekrany dlja otsechki polja v nerabochej oblasti uglov antenny. Antenny. 2018. № 10(254). S. 3−14 (In Russian).  
  5. Bobreshov A.M., Markova E.A., Uskov G.K. Sintez neodnorodnoj dijelektricheskoj sredy dlja uluchshenija napravlennyh harakteristik bikonicheskoj antenny. Antenny. 2018. № 7(251). S. 33−39 (In Russian).  
  6. Indenbom M.V. Peredajushhie antenny MMDS. Ch. 2. Metody rascheta. Antenny. 2009. № 6(145). S. 25−30 (In Russian).  
  7. Kol'cov M.V., Raevskij A.S., Raevskij S.B. Raschet linz Frenelja dlja antenn submillimetrovogo diapazona. Antenny. 2012. № 10(185). (In Russian).  
  8. Zhaolou Cao, Fenping Cui, Fenglin Xian, Jinhua Li, Shixin Pei. Geometrical optics approximation for plane-wave scattering by a rectangular groove on a surface. Appl. Opt. 2020. V. 59. Р. 2600−2605. 
  9. Núñez M. On the second order geometric optics approximation to fast magnetosonic waves. Commun. Nonlinear Sci. Numer. Simul. 2020. № 82. Р. 105032. 
  10. Bass F., Freilikher V., Maradudin A.A., Prosentsov V. Geometrical optics approximation for nonlinear equations. SIAM J. Appl. Math. 2004. № 64. Р. 1125–1132. 
  11. Zhai Mengran, Lü Qieni, Zhang Hongxia, Zhang Yinxin. Coated sphere scattering by geometric optics approximation. J. Opt. Soc. Am. 2014. V. A31. Р. 2160 2169. 
  12. Kravcov Ju.A., Orlov Ju.I. Geometricheskaja optika neodnorodnyh sred. M.: Nauka. 1980. 360 s. (In Russian).
  13. Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. M.: Nauka. 1978. 
  14. Konov K.I. Reshenie zadachi Koshi chislennym metodom s vyborom peremennoj integrirovanija na kazhdom shage. Innovacionnye, informacionnye i kommunikacionnye tehnologii. 2018. № 1. S. 545−550 (In Russian).
  15. Tihonov A.N., Vasil'eva A.B., Sveshnikov A.G. Kurs vysshej matematiki i matematicheskoj fiziki. Differencial'nye uravnenija. M.: Fizmatlit. 2005. (In Russian).
  16. Hartman F. Obyknovennye differencial'nye uravnenija. M.: Mir. 1972. (In Russian).
  17. Samarskij A.A., Nikolaev E.S. Metody reshenija setochnyh uravnenij. M.: Nauka. 1978. 592 s. (In Russian). 
  18. Li Ming, Chen CS, Hon YC. A meshless method for solving nonhomogeneous Cauchy problems. Engineering Analysis with Boundary Elements. 2011. V. 35. P. 499−506. 
  19. Jin B. A meshless method for the Laplace and Biharmonic equations subjected to noisy boundary data. Computer Modeling in Engineering and Sciences. 2004. V. 6, № 3. Р. 253−261. 
  20. Ryaben’kii V.S. Method of Difference Potentials and Its Applications. Springer Series in Computational Mathematics. Berlin, Heidelberg. 2002. V. 30.
  21. Kal’menov T.Sh., Iskakova U.A. A method for solving the Cauchy problem for the Laplace equation. Doklady Mathematics. 2008. V. 78.  № 3. Р. 874–876. 
  22. Rusov V.A., Doroshenko A.Y. Numerical Method to Solve the Cauchy Problem with Previous History. Cybern. Syst. Anal. 2017. № 53.  Р. 34–56. 
  23. Achieng P., Berntsson F., Chepkorir J., et al. Analysis of Dirichlet–Robin Iterations for Solving the Cauchy Problem for Elliptic Equations. Bull. Iran. Math. Soc. 2020. 
  24. Berntsson F., Kozlov V.A., Mpinganzima L., Turesson B.O. An alternating iterative procedure for the Cauchy problem for the Helmholtz equation. Inverse Probl. Sci. Eng. 2014. V. 22, № 1. Р. 45–62.  
  25. Andronov A.A., Vitt A.A., Hajkin S.Je. Teorija kolebanij. M.: Fizmatgiz. 1959. 916 s. (In Russian).
  26. Perfil'ev V.V., Stepanov E.S., Klimov K.N. Metodika vybora peremennoj integrirovanija pri chislennom postroenii traektorij luchej v neodnorodnyh dijelektricheskih sredah. Radiotehnika i jelektronika. 2016. T. 61. № 12 (In Russian).  
  27. Klimov K.N., Konov K.I. Metodika vybora peremennoj integrirovanija pri chislennom modelirovanii traektorij luchej v neodnorodnyh sredah. Sistemy sinhronizacii, formirovanija i obrabotki signalov. 2018. T. 9. № 4. S. 57-68 (In Russian). 
  28. Klimov K.N., Konov K.I. Modification of the Integration Variable Selection Method in Numerical Simulation of Electromagnetic Wave Propagation in the Time Domain. 2019 International Seminar on Electron Devices Design and Production (SED 2019). Prague, Czech Republic. 2019. Р. 1-5 (In Russian). 
  29. Konov K.I. Metodika vybora peremennoj integrirovanija pri chislennom reshenij jelektrodinamicheskih zadach v geometroopticheskom priblizhenii. Materialy Mezhvuz. nauch.-tehnich. konf. studentov, aspirantov i molodyh specialistov im. E.V. Armenskogo (Moskva, 17 fevralja – 01 2017 g.). M.: Moskovskij institut jelektroniki i matematiki NIU VShJe. 2017. S. 273-274 (In Russian).
  30. Konov K.I. Algoritm integrirovanija s vyborom peremennoj integrirovanija na kazhdom shage. Innovacionnye, informacionnye i kommunikacionnye tehnologii. 2017. № 1. S. 621-626 (In Russian).  
  31. Klimov K.N., Epaneshnikova I.K., Belevtsev A.M., et al. Development of the integration variable selection method in numerical simulation of electromagnetic wave propagation in the time domain mode. Proceedings of SPIE. The International Society for Optical Engineering. Strasbourg. 2019. P. 111640I. DOI 10.1117/12.2547837.
  32. Konov K.I. Opisanie algoritma integrirovanija sistemy differencial'nyh uravnenij s vyborom peremennoj integrirovanija i issledovanie ego shodimosti. Materialy nauch.-tehnich. konf. studentov, aspirantov i molodyh specialistov im. E.V. Armenskogo ( Moskva, 17 fevralja – 01 2017 g.). M.: Moskovskij institut jelektroniki i matematiki NIU VShJe. M.: Moskovskij institut jelektroniki i matematiki NIU VShJe. 2018. S. 151-152 (In Russian).  
  33. Konov K.I., Klimov K.N. Ocenka pogreshnosti pri chislennom modelirovanii traektorij luchej s ispol'zovaniem algoritma vybora peremennoj integrirovanija. Tezisy dokladov Mezhdunar. nauch. konf. «Matematicheskoe modelirovanie v jelektrodinamike: teorija, metody i prilozhenija» (Penza, 23–27 sentjabrja 2019 g.). Pod red. Ju.G. Smirnova. Penza: Penzenskij gos. un-t. 2019. S. 59-60 (In Russian).  
  34. Klimov K.N., Konov K.I., Belevtsev A.M., et al. Assessment of the accuracy of the integration variable selection method and its practical application terahertz range. Proceedings of SPIE «The International Society for Optical Engineering». Virtual, online, 21–25 сентября 2020; virtual, online, 2020. P. 115410L. DOI 10.1117/12.2582075.
  35. Luneburg R.K. Theory of Optics. Brown University, Providence, Rhode Island. 1944. P. 189-213 (In Russian).   
  36. Morgan S.P. General Solution of the Luneberg Lens Problem. J. Appl. Phys. 1958. V. 29. № 9. P. 1358 (In Russian).  
  37. Golubjatnikov A.V., Kacenelenbaum B.Z.. Radiotehnika i jelektronika. 1997. T. 42. № 12 (In Russian).  
  38. Golubjatnikov A.V., Kacenelenbaum B.Z. Linza Ljuneberga iz kubikov. Geometricheskij raschet. Pis'ma v ZhTF. 1998. T. 24. № 15 (In Russian).   
  39. Kaloshin V.A., Stojanov S. Zamedljajushhie svojstva sloistyh dijelektricheskih struktur. Radiotehnika i jelektronika. 1989. T. 34. № 12 (In Russian).  
  40. Kaloshin V.A., Shherbenkov V.Ja. Obobshhenie zadachi Ljuneberga dlja anizotropnoj sredy. Radiotehnika i jelektronika. 1973. T. 18. № 1 (In Russian).  
  41. Ahijarov V.V., Kaloshin V.A., Nikitin E.A. Issledovanie shirokopolosnyh planarnyh linz Ljuneburga. Zhurnal radiojelektroniki. 2014. № 1.  S. 17 (In Russian).  
  42. Kuhn R. Microwellenantennen. Berlin: Veb Verlag Technik. 1967. 
  43. Veselago V.G. O formulirovke principa Ferma dlja sveta, rasprostranjajushhegosja v veshhestvah s otricatel'nym prelomleniem. Uspehi fizicheskih nauk. 2002. T. 172. № 10 (In Russian).  
Date of receipt: 27.05.2021
Approved after review: 11.06.2021
Accepted for publication: 23.07.2021