V.А. Ufaev1, M.P. Belyaev2
1,2 MESC of the Air Force "MAA named after Professor N.E. Zhukovsky and Yu.A. Gagarin" (Voronezh, Russia)
Problem statement. Estimates of the coordinates of the emitters in multi-position difference-rangefinder systems are obtained by maximizing maximum likelihood functionals using numerical methods. A computationally less expensive algebraic solution is also known. The accuracy achieved in this case is not investigated, and the non-accuracy of the measurements is not taken into account, for example, due to differences in the levels of the received signals, which in turn leads to an increase in the errors of estimating the coordinates.
The task is to develop and research algorithms for determining coordinates in a differential-rangefinder system, taking into account the unequal accuracy of measurements to obtain an algebraic solution.
Purpose of the article – development and research of algorithms for determining coordinates in a differential-rangefinder system with unequal measurements.
Result. For a sample of non-uniform distance measurements with the uncertainty of the reference point, the maximum likelihood algorithm for calculating coordinates with an estimate of the potential accuracy is given. By removing the uncertainty, the transition to the calculation algorithm based on a sample of measurements of the distance difference is made. Based on the hypothesis of equality of the measured and true differences of distances with weight, an algebraic solution to the problem of determining coordinates is obtained. A variant of ambiguity resolution by comparing the values of the maximum likelihood function at the corresponding points of the estimate is proposed. A comparative assessment of the accuracy of determining the coordinates with and without taking into account the unevenness of measurements was carried out by modeling.
Practical significance. The proposed solution provides a significant increase in the accuracy of determining coordinates while reducing the calculation speed by 2-3 orders of magnitude.
Ufaev V.А., Belyaev M.P. Algebraic solutions for determining the coordinates of the emitter in a difference-rangefinder system with non-uniform measurements. Radiotekhnika. 2021. V. 85. № 10. P. 81−87. DOI: https://doi.org/10.18127/j00338486-202110-08 (In Russian)
- Chernjak V.S. Mnogopozicionnaja radiolokacija. M.: Radio i svjaz'. 1993. 416 s. (In Russian).
- Shherbachjov V.A. Zamknutye reshenija pri opredelenii koordinat v raspredelennoj raznostno-dal'nomernoj sisteme. Radiotehnika. 2013. № 4. S. 4−8. (In Russian).
- Ufaev V.A. Sposoby opredelenija mestopolozhenija i prostranstvennoj identifikacii istochnikov radioizluchenij: Monografija. Voronezh: Izdatel'stvo «Cifrovaja poligrafija». 2019. 430 s. (In Russian).
- Manelis V.B., Sergienko A.I. Vysokotochnaja ocenka vremeni prihoda radiosignalov. Izvestija vuzov. Ser. Radiojelektronika. 2008. № 2. S. 64−68 (In Russian).
- Fal'kovich S.E. Ocenka parametrov signala. M.: Sovetskoe radio. 1970. 336 s. (In Russian).
- Ufaev V.A. Algebraicheskie reshenija pri opredelenii koordinat izluchatelja po rezul'tatam mnogopozicionnyh izme-renij naprjazhennosti polja. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2020. T. 18. № 4. S. 5−12 (In Russian).
- Bukov V.N. Vlozhennye sistemy. Analiticheskij podhod k analizu i sintezu matrichnyh sistem. Kaluga: Izd-vo nauch. lit-ry N.F. Bochkarjovoj. 2006. 720 s. (In Russian).
- Grudinskaja G.P. Rasprostranenie radiovoln. M.: Vysshaja shkola. 1975. 280 s. (In Russian).