350 rub
Journal Radioengineering №5 for 2020 г.
Article in number:
The choice of radiation parameters of a high-power microwave generator in the task of electromagnetic damage to radio-electronic means
DOI: 10.18127/j00338486-202005(9)-03
UDC: 621.373
Authors:

A.A. Volkov – Ph.D. (Eng.), Lecturer,  Military Educational-Research Centre 

of Air Force «Air Force Academy named after professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh) E-mail: volkov_aa@autorambler.ru

Abstract:

Formulation of the problem. When choosing the radiation parameters of high-power microwave generators designed for the electromagnetic damage of radio-electronic means, it becomes necessary to take into account the limitations associated with the electric strength of the air in the emitting antenna and the final energy reserve of the power source when the «power source – generator» system is used autonomously. The energy supply of the power source is determined by the mass-sized resource of the payload of the carrier, on which the generator and the power source are located. The choice of radiation parameters must be made according to the criterion of maximum efficiency of electromagnetic damage to radio-electronic means with restrictions on the electric strength of the atmosphere, the volume and mass of the payload of the carrier. In the well-known literature, such a problem was not solved.

Purpose. Development of a methodology for choosing the radiation parameters of an electromagnetic field generator, ensuring the greatest efficiency of electromagnetic damage to radio-electronic means under conditions of restrictions on the electric strength of the atmosphere, volume and mass of the carrier payload.

Results. The range of destruction was chosen as an indicator of the effectiveness of electromagnetic damage to radio-electronic means. An explicit form of the dependence of the maximum permissible power of a microwave generator on the duration, repetition period, and number of emitted pulses is determined. Possible idle losses in the «power source – generator» system are taken into account. A technique has been developed for choosing the optimal parameters of the generator radiation according to the criterion for the longest range of electromagnetic damage to a radio-electronic means under conditions of restrictions on the electric strength of the atmosphere, the volume and weight of the carrier payload. The optimal operating modes of the generator are determined in some special cases. The dependences of the relative range of the computer’s defeat by the electromagnetic field generated by the «capacitive storage – vircator» system on the radiation parameters are calculated and their characteristics are given.

Practical significance. The results can be used to justify the requirements for the radiation parameters of high-power electromagnetic field generators.

Pages: 28-36
References
  1. Panov V.V., Sarkis'yan A.P. Nekotoryye aspekty problemy sozdaniya SVCh sredstv funktsional'nogo porazheniya. Zarubezhnaya radioelektronika. 1993. №10,11,12. S. 3–10 (in Russian).
  2. Dobykin V.D., Kupriyanov A.I., Ponomarov V.G., Shustov L.N. Radioelektronnaya bor'ba. Silovoye porazheniye radioelektronnykh sistem. M.: Vuzovskaya kniga. 2007. 468 s. (in Russian).
  3. Volkov A.A., Trifonov P.A. Predel'no dopustimaya proboynaya moshchnost' v antenne sverkhvysokochastotnogo generatora. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika. 2016. №2. S. 15–21 (in Russian).
  4. Volkov A.A., Trifonov P.A. Uchet vremeni povtoreniya i chisla impul'sov elektromagnitnogo polya pri otsenke urovney stoykosti radioelektronnykh sredstv v ramkakh teplovoy modeli. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika. 2015. №4. S. 5–12 (in Russian).
  5. Avdeyev V.B. Dostizhimyye kharakteristiki elektromagnitnogo porazheniya raspredelennykh po zemnoy poverkhnosti radioelektronnykh tseley. Izvestiya vysshikh uchebnykh zavedeniy. Radioelektronika. 2001. T.44. №9. S. 4–16 (in Russian).
  6. Usychenko V.G., Sorokin L.N. Stoykost' sverkhvysokochastotnykh radiopriyemnykh ustroystv k elektromagnitnym vozdeystviyam. M.: Radiotekhnika, 2017. 288 s. (in Russian).
  7. Didenko A.N. SVCh-energetika: Teoriya i praktika. M.: Nauka, 2003. 446 s. (in Russian).
  8. Dubinov A.Ye., Selemir V.D. Elektronnyye pribory s virtual'nym katodom. Radiotekhnika i elektronika. 2002. T.47. №6. S. 645–672.
  9. Cherepenin V.A. Relyativistskiye mnogovolnovyye SVCh generatory i ikh vozmozhnyye primeneniya. Uspekhi fizicheskikh nauk. 2006. T.176. №10. S. 1124–1130 (in Russian).
  10. Ayzenberg G.Z. Antenny ul'trakorotkikh voln. M.: Gosudarstvennoye izdatel'stvo literatury po voprosam svyazi i radio, 1957. 700 s. (in Russian)
  11. Vzryvnyye generatory moshchnykh impul'sov elektricheskogo toka. Pod red. V.Ye. Fortova. M.: Nauka, 2002. 399 s. (in Russian).
  12. Yushkov Yu.G., Chumerin P.YU., Artemenko S.N., Novikov S.A., Zelentsov D.V. Eksperimental'noye issledovaniye vozdeystviya sverkhvysokochastotnykh impul'sov na rabotu komp'yutera. Radiotekhnika i elektronika. 2001. T.46. №8. S. 1020–1024.
  13. Istochniki SVCh izlucheniya s virtual'nym katodom [Elektronnyy resurs]. Rezhim dostupa: http://portal.tpu.ru:7777/departments/laboratory/lab42/sciense/svch_virt (data obrashcheniya 22.03.2020) (in Russian). 
  14. Rukhadze A.A., Stolbetsov S.D., Tarakanov V.P. Virkatory (obzor). Radiotekhnika i elektronika. 1992. T.37. №3. S. 385–396 (in Russian).
  15. Dubinov A.G., Selemir V.D. Elektronnyye pribory s virtual'nym katodom. Radiotekhnika i elektronika. 2002. T.47. №6. S. 645–672 (in Russian).
Date of receipt: 14 января 2020 г.