350 rub
Journal Radioengineering №4 for 2020 г.
Article in number:
Estimation of stability boundaries of first-order suboptimal filters with range-Doppler coupling compensation
Type of article: scientific article
DOI: 10.18127/j00338486-202004(7)-01
UDC: 621.396.96
Authors:

M.A. Murzova – Post-graduate Student, Moscow Institute of Physics and Technology (National Research University);  Engineer, PJSC «Radiofizika» (Moscow)

E-mail: mariya.trofimenko@phystech.edu

V.E. Farber – Dr.Sc.(Eng.), Professor, Head of Department, PJSC «Radiofizika» (Moscow); 

Professor, Moscow Institute of Physics and Technology (National Research University State University)

E-mail: vladeffar@mail.ru

Abstract:

An observation of a range with radar using LFM waveforms leads to relative displacement of the true range of a target. This range displacement is proportional to the range rate due to effect of a range-Doppler coupling. One of the most simple ways to account the range-Doppler coupling error is to compensate range measurement by an estimated value of this error. Kalman filters which using this compensation are suboptimal filters. This paper provides an estimation of stability boundaries of first-order suboptimal filters at different initial states such as αβ-filter, diffusion filter and growing-memory filter. Two methods of initial states formation are supposed. One of them compensates the range-Doppler coupling error, while another doesn’t compensate this error. Compensating the range-Doppler coupling error in the initial state formation increases stability boundaries of the filters in comparison with another method. This paper provides an estimation of stability boundaries of first-order suboptimal filters at different initial states such as αβ-filter, diffusion filter and growing-memory filter. The estimation of stability boundaries is based on analysis of suboptimal filters output responses to a linear function with white noise and a unit step function at different initial states and at fixed range-Doppler coupling coefficient.

Pages: 5-15
References
  1. Shirman Ya.D., Manzhos V.N. Teoriya i tekhnika obrabotki radiolokacionnoj informacii na fone pomekh. M.: Radio i svyaz'. 1981 (in Russian).
  2. Trofimenko M.A., Farber V.E. Ocenka vliyaniya nalichiya skorostnoj oshibki pri izmereniyah dal'nosti v RLS s LCHM-signalom na granicy ustojchivosti algoritmov ocenki dal'nosti i radial'noj skorosti. Radiotekhnika. 2015. № 10. S. 7−16 (in Russian).
  3. Murzova M.A., Farber V.E. Sravnenie sposobov kompensacii skorostnoj oshibki po dal'nosti v algoritmah ocenki dal'nosti i radial'noj skorosti. Radiotekhnika. 2019. № 4. S. 5−18. DOI: 10.18127/j00338486-201904(4)-01 (in Russian).
  4. Trofimenko M.A., Farber V.E. Ocenka vliyaniya skorostnoj oshibki na ustojchivost' fil'trov vtorogo poryadka. Radiotekhnika. 2016. № 4. S. 5−17 (in Russian).
  5. Trofimenko M.A., Farber V.E. Ocenka vliyaniya skorostnogo smeshcheniya v radiolokacionnyh stanciyah s LCHM-signalom na granicy ustojchivosti soprovozhdeniya vhodyashchih v atmosferu kosmicheskih ob"ektov. Trudy MFTI. 2015. T. 7. № 2. S. 156−166 (in  Russian).
  6. Trofimenko M.A., Farber V.E. Influence of range-Doppler coupling on the tracking stability of reentering space objects. 2015 International Conference on Engineering and Telecommunication. IEEE. 2015. P. 40–44.
  7. Murzova M.A., Farber V.E. Skhodimost' α-β fil'tra dlya razlichnyh znachenij koefficientov skorostnogo smeshcheniya. Radiotekhnika. 2018. № 10. S. 5−17. DOI: 10.18127/j00338486-201810-01 (in Russian).
  8. Murzova M.A., Farber V.E. The α-β Filter for Tracking Maneuvering Objects with LFM Waveforms. 2017 IVth International Conference on Engineering and Telecommunication. IEEE. 2017. P. 104–107.
  9. Murzova M.A. Ocenka vliyaniya skorostnoj oshibki po dal'nosti na tochnostnye harakteristiki fil'tra pervogo poryadka. Materialy XI Vserossijskoj nauchno-tekhnicheskoj konferencii «Radiolokaciya i radiosvyaz'». 2017. S. 57−61 (in Russian).
  10. Murzova M.A., Farber V.E. Vybor koefficientov sglazhivaniya α-β fil'tra po kriteriyu minimuma dispersii summarnoj oshibki dlya RLS s LCHM-signalom. Radiotekhnika. 2018. № 4. S. 5−16 (in Russian).
  11. Murzova M.A., Farber. V.E. The Transient Response of αβ-Filter for Tracking with LFM Waveforms. Fifth International Conference on Engineering and Telecommunication. EnT-MIPT 2018. IEEE. 2018. P. 118−121.
  12. Saho K. Steady-State Performance Analysis of Tracking Filter Using LFM Waveforms and Range-Rate Measurement. Mathematical Problems in Engineering. 2018. V. 2018.
  13. Truhachev A.A. Primenenie impul'sov s linejnoj chastotnoj modulyaciej dlya avtosoprovozhdeniya celej. Vestnik vozdushnokosmicheskoj oborony. 2019. №1(21). S. 41–57 (in Russian).
  14. Jain V., Blair W. D. Filter Design for Steady-State Tracking of Maneuvering Targets with LFM Waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2009. V. 45. № 2. P. 765−773.
  15. Wong W., Blair W.D. Steady-state tracking with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. № 2. P. 701−709. 
  16. Murzova M.A., Farber V.E. Analiz atmosfernogo fil'tra, adaptirovannogo k nalichiyu skorostnoj oshibki po dal'nosti. Radiotekhnika. 2017. № 4. S. 5−14 (in Russian).
  17. McDonough M., Blair W. D. Steady-state tracking with FMCW radars. Proceedings of the 2018 Aerospace Conference. 2018. P. 1–7.
  18. Murzova M.A., Farber V.E. Vybor koefficientov diffuzii dlya fil'tra Kalmana s kompensaciej skorostnoj oshibki po dal'nosti. Radiotekhnika. 2019. № 10(15). S. 32−42. DOI: 10.18127/j00338486-201910(15)-06 (in Russian).
  19. Tuzlukov V. Signal processing in radar systems. Tailor & Francis Group. 2013.
  20. Farber V.E. Osnovy traektornoj obrabotki radiolokacionnoj informacii v mnogokanal'nyh RLS. Ucheb. posobie. M.: MFTI. 2005.
  21. Eli Brookner. Tracking and Kalman Filtering Made Easy. John Wiley & Sons, Inc. 1998.
Date of receipt: 17 марта 2020 г.