A.N. Udodov 1, S.B. Makarov 2, S.V. Zavjalov 3, V.V. Rud4, A.A. Tuzova 5
1 JSC «UEC-Klimov» (Saint-Petersburg, Russia)
1,2,3,5 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia (Saint-Petersburg, Russia)
4 «R&D center of Radiotechnics» Co. Ltd. (Saint-Petersburg, Russia)
1a.n.udodov@yandex.ru, 2makarov@cee.spbstu.ru, 3zavyalov_sv@spbstu.ru, 4rud@coresar.ru, 5tuzova_aa@spbstu.ru
Formulation of the problem. The main trend in improving reliability, safety and reducing the time required for performing routine maintenance at complex technical facilities, for example, on a gas turbine engine, is the use of wireless monitoring and control systems for engine operation. This article will consider methods and means of ensuring the stability of data transmission in multipath conditions, in the absence of a line of sight between the receiver and transmitter.
Goal. Construct maps of the spatial distribution of signal energy on the surface of a gas turbine engine using the method of threedimensional modeling of multipath propagation of signals between the structures of the units of this engine.
Results. A generalized model of a system for wireless monitoring of the operation of a gas turbine engine is proposed, and possible locations of sensors and receiving-transmitting modules on the surfaces of engine units are analyzed. A specialized software package has been proposed and adapted, which allows three-dimensional modeling of the data transmission channel and the construction of a signal power distribution map. Maps of the distribution of signal powers under conditions of multipath propagation of oscillations were obtained for a model of a cylindrical configuration of a gas turbine engine and a nacelle for 5 wireless sensors of the automatic control system located on the engine and one control unit located on the nacelle. It is shown that for a given location of the sensors, the cards have a significant dependence on the specified (required) power level required to ensure stable signal reception.
Practical significance. Recommendations are given on the use of the simulation results when placing the nodes of the wireless engine control system at the facility. On the basis of the obtained maps of the spatial distribution of power, estimates are given for the choice of the surface area on which the location of the receiver of the wireless monitoring and engine control system is recommended.
Udodov A.N., Makarov S.B., Zavjalov S.V., Rud V.V., Tuzova A.A. Three-dimensional modeling of multipath propagation of signals in wireless data transmission systems for the parameters of a gas turbine engine. Radiotekhnika. 2020. V. 84. № 12(24). P. 81−92. DOI: 10.18127/j00338486-202012(24)-08 (In Russian).
- Gómez O.E. Fly-by-wireless: Benefits, risks and technical challenges. CANEUS Fly by Wireless Workshop 2010. Orono, ME. 2010. Р. 14-15. DOI: 10.1109/FBW.2010.5613788.
- Dinh-Khanh Dang, Mifdaoui A. and Gayraud T. Fly-By-Wireless for next generation aircraft: Challenges and potential solutions. 2012 IFIP Wireless Days. Dublin. 2012. Р. 1-8. DOI: 10.1109/WD.2012.6402820.
- Udodov A.N. Analiz vozmozhnostej postroenija jenergojeffektivnyh besprovodnyh sensornyh setej dlja monitoringa raboty dvigatelej. Jelektronnyj zhurnal «Trudy MAI». 2014. № 74 (In Russian).
- Normann R.A. First High-Temperature Electronics Products Survey 2005. Sandia National Laboratories. April 2006.
- Yedavalli Rama K., Belapurkar Rohit K. Application of wireless sensor networks to aircraft control and health management systems. J. Control. Theory. Appl. 2011. № 9(1). Р. 28–33.
- Zudov R.I., Sorockij V.A. Novaja jelementnaja baza dlja kljuchevyh usilitelej moshhnosti VCh-diapazona. Radiotehnika. 2018. № 1. S. 100-103 (In Russian).
- Nguen T.H.F., Gel'gor A.L. Sintez spektral'no-jeffektivnyh signalov pri nalichii ogranichenija v vide spektral'noj maski. Doklady 21-j Mezhdunar. konf. «Cifrovaja obrabotka signalov i ee primenenie» (DSPA-2019). 2019. S. 37-42 (In Russian).
- Zav'jalov S.V., Makarov S.B., Volvenko S.V., Dun G., Polozhincev B.I. Ocenka jenergeticheskoj jeffektivnosti priema mnogochastotnyh optimal'nyh sefdm-signalov s ponizhennym znacheniem pik-faktora. Radiotehnika. 2018. № 1. S. 31-41 (In Russian).
- Pergushev A.O., Sorockij V.A., Ulanov A.M. Snizhenie iskazhenij vyhodnogo naprjazhenija v moduljacionnyh istochnikah pitanija dlja usilitelej moshhnosti radiosignalov s vysokim pik-faktorom. Radiotehnika. 2019. № 12. S. 68-79. DOI: 10.18127/j00338486201912(20)-09 (In Russian).
- Nguen V.F., Gorlov A.I., Gel'gor A.L. Dostizhenie maksimal'noj spektral'noj jeffektivnosti putem odnovremennogo uvelichenija razmera signal'nogo sozvezdija i vvedenija upravljaemoj mezhsimvol'noj interferencii. Radiotehnika. 2018. № 1. S. 42-48 (In Russian).
- Suryanegara M. and Raharya N. Modulation performance in Wireless Avionics Intra Communications (WAIC). 2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering. Semarang. 2014. Р. 434-437. DOI: 10.1109/ICITACEE.2014.7065786
- ITU Radiocommunication Study Groups. Working Document Towards a Preliminary Draft New Report ITU-R M: Characteristics of WAIC systems and bandwidth requirements to support their safe operation. ITU-R, Geneva, Switzerland. Dec. 2013.
- ITU Radiocommunication Study Groups. Draft New Report ITU-R M: Characteristics of W AIC systems and bandwidth requirements to support their safe operation. ITU-R, Geneva, Switzerland. May 2012.
- Markov G.T., Chaplin A.F. Vozbuzhdenie jelektromagnitnyh voln. M.-L.: Jenergija. 1967. 376 s. (In Russian).
- RECOMMENDATION ITU-R P.1238-3 (Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 MHz to 100 GHz).
- Mac Namara D.A., Malherbe J.A.G., Pistorius C.W.I. Introduction to the uniform geometrical theory of diffraction. Boston, MA: Artech House. 1990. 471 p.