350 rub
Journal Radioengineering №12 for 2020 г.
Article in number:
Comparative efficiency of two TDOA satellite geolocation methods
Type of article: scientific article
DOI: 10.18127/j00338486-202012(24)-02
UDC: 621.396.96
Authors:

P.A. Kistanov 1, A.A. Titov 2, O.V. Tsarik 3, I.A. Tsikin 4, E.A. Shcherbinina 5

1,4,5 Peter The Great St. Petersburg Polytechnic University (Saint-Petersburg, Russia)

2,3 LLC «Special Technology Center» (Saint-Petersburg, Russia)

1 adavydenko@stc-spb.ru; 2 evgeniy.retc@gmail.com; 3 tsikin@mail.spbstu.ru

Abstract:

The paper considers the positioning of the radio source with unknown form that destructively affects on the operation of satellite communication systems. This paper compares two TDOA-based methods: single-step and two-step. The considered single-step method is a modified direct positioning method, in which signals from satellites are jointly processed to determine radio source coordinates. The conventional two-step TDOA-based method on the first step measures time differences, which appear while radio source signal is propagating through satellites, and on the second step solves the nonlinear system of equations to find radio source coordinates estimations. The effect of the analysis interval, attenuation in the adjacent channels and the analysis frequency band on the positioning accuracy is analyzed in detail. The simulation results indicate a significant effect of the single-step method versus twostep method in whole range of attenuation in the adjacent channels, analysis interval and analysis bandwidth.

The single-step method is also investigated in the presence of phase distortions, which can be caused by the operation of the satellite transponder equipment and by the satellite propagation channel. Two variants with ‘hard’ and ‘soft’ decisions about the radio source coordinates are considered. The analysis interval is divided into sufficiently small partial intervals to garantee a small phase change. The efficiency of the modified direct method with ‘hard’ and ‘soft’ decisions is analyzed for different values of signal attenuation in the adjacent channels. This analysis showed the highest efficiency of the method with ‘soft’ decisions in the most difficult conditions of signal reception. 

Pages: 17-30
For citation

Kistanov P.A., Titov A.A., Tsarik O.V., Tsikin I.A., Shcherbinina E.A. Comparative efficiency of two TDOA satellite  geolocation methods. Radiotekhnika. 2020. V. 84. № 12(24). P. 17−30. DOI: 10.18127/j00338486-202012(24)-02  (In Russian).

References
  1. Chan M. Application of a dual satellite geolocation system on locating sweeping interference. World Academy of Science, Engineering and Technology. 2012. № 6. Р. 1029-1034.
  2. Haworth D., Smith N., Bardelli R., Clement T. Interference localization for EUTELSAT satellites – the first european transmitter location system. International journal of satellite communications. 1997. № 15. Р. 155-183. 
  3. Griffin C., Duck S. Interferometric radio-frequency emitter location. IEE Proceedings-Radar, Sonar and Navigation. 2002. № 149.  Р. 153-160
  4. Yan H., Cao J.K., Chen L. Study on location accuracy of Dual-Satellite Geolocation system. IEEE 10th International Conference on  Signal Processing Proceedings. 2008. C. 107 110.
  5. Wu R., Zhang Y., Huang Y., Xiong J., Deng Z. A Novel Long-Time Accumulation Method for Double-Satellite TDOA/FDOA Interference Localization. Radio Science. 2018. № 53. Р. 129 142.
  6. Ho K.C., Chan Y.T. Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE transactions on aerospace and electronic systems. 1997. № 33(3). Р. 770–783.
  7. Ho K.C., Chan Y.T. Solution and performance analysis of geolocation by TDOA. IEEE Transactions on Aerospace and Electronic Systems. 1993. № 29(4). Р. 1311–1322.
  8. Weiss A.J., Amar A. Direct geolocation of stationary wideband radio signal based on time delays and Doppler shifts. 2009 IEEE/SP 15th Workshop on Statistical Signal Processing. 2009. Р. 101-104.
  9. Ma F., Liu Z.-M., Guo F. Direct Position Determination for Wideband Sources Using Fast Approximation. IEEE Transactions on Vehicular Technology. 2019. № 68. Р. 8216-8221. 
  10. Ma F., Guo F., Yang L. Low-complexity TDOA and FDOA localization: A compromise between two-step and DPD methods. Digital Signal Processing. 2020. 96 р.
  11. Vankayalapati N., Kay S., Ding Q. TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound. IEEE transactions on aerospace and electronic systems. 2014. № 50. Р. 1616-1635.
  12. Zhou P., Zhang Q., Lin H., Yu P. The influence of sampling mode on the accuracy of satellite interference geolocation. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). 2017. Р. 1-5.
  13. Zheng-bo S., Shang-Fu Y. Analysis on parameter error of satellite interference location. 2004 Asia-Pacific Radio Science Conference Proceedings. 2004. Р. 265−268.
  14. Sevidov V., Chemarov A. Opredelenie koordinat sputnikov-retransljatorov v raznostno-dal'nomernoj sisteme geolokacii. Izvestija Vysshih uchebnyh zavedenij Rossii. 2015. № 3. S. 41 (In Russian).
  15. Smith J., Abel J. The spherical interpolation method of source localization. IEEE Journal of Oceanic Engineering. 1987. № 12(1). Р. 246–252.
  16. Huang Y., Benesty J., Elko G.W. An efficient linear-correction least-squares approach to source localization. Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics. 2001. Р. 67–70.
  17. Martinez A., AguadoAgelet F., Alvarez-Vázquez L. J., Hernando J. M., Mosteiro D. Optimal transmitter location in an indoor wireless system by Nelder–Mead method. Microwave and optical technology letters. 2000. № 27(2). Р. 146–148.
  18. Vargauzin V.A., Potapichev V.N. Primenenie optimizacionnogo algoritma Nedlera Mida pri reshenii s putnikovoj geolokacionnoj zadachi raznostno-dal'nomernym metodom. Nedelja nauki SPbPU. 2017. S. 8–10 (In Russian).
  19. Cao J. A new hybrid algorithm on TDOA localization in wireless sensor network. IEEE International Conference on Information and Automation. 2011. Р. 606–610. 
  20. Van Trees H.L., Bell K.L. Detection estimation and modulation theory. Wiley. 2013.
  21. Cikin I.A., Shherbinina E.A. Potencial'naja tochnost' ocenki uglov orientacii na osnove analiza funkcii pravdopodobija signalov GPS na jelementah priemnoj antennoj reshetki. Radiotehnika. 2016. T. 80. № 12. S. 144-149 (In Russian).
  22. Melihova A.P., Cikin I.A. Algoritmy prinjatija reshenija pri pelengacionnom metode kontrolja celostnosti navigacionnogo polja. Radiotehnika. 2018. T. 82. № 1. S. 63-75 (In Russian).
  23. Kistanov P., Titov A., Tsarik O., Tsikin I., Shcherbinina E. Satellite geolocation direct method in the presence of phase distortions. 2020 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech). 2020.
  24. Maral G., Bousquet M., Sun Z. Satellite communications systems: systems, techniques and technology. John Wiley & Sons. 2020.
  25. Celestrak orbit visualization. http://www.celestrak.com/NORAD/elements/geo.txt, last accessed 2020/11/1F.
Date of receipt: 03.11.2020