S.V. Bozhokin – Ph.D.(Phys.-Math.), Associate Professor,
Institute of Physics, Nanotechnology and Telecommunications of Peter The Great St. Petersburg Polytechnic University E-mail: bsvjob@mail.ru
K.A. Barantsev – Ph.D.(Phys.-Math.), Associate Professor,
Institute of Physics, Nanotechnology and Telecommunications of Peter The Great St. Petersburg Polytechnic University E-mail: kostmann@yandex.ru
A.N. Litvinov – Ph.D.(Phys.-Math.), Associate Professor,
Institute of Physics, Nanotechnology and Telecommunications of Peter The Great St. Petersburg Polytechnic University E-mail: andrey.litvinov@mail.ru
Formulation of the problem. The key elements that determine the accuracy of synchronization of all airborne and ground-based elements of satellite navigation systems are quantum frequency standards (QFS), the main characteristics of which are short-term and long-term stability.
Goal. Apply the wavelet analysis method to determining the long-term instability of the QFS. This method allows us to analyze unsteady signals and find a set of quantitative characteristics that describe the changes in the spectral properties of the QFS signal over time. Results. The continuous wavelet transform method is used to analyze the non-stationary discrete signal of the QFS. The generalization of the orthogonality condition of the mother wavelets, the inversion formula, and the Parseval equality to the case of discrete signals is performed. An expression for wavelet dispersion is obtained. The moments of time that are characterized by flashes of activity in various spectral ranges are determined. The obtained results are compared with the traditional method for analyzing the stability of QFS based on the Allan dispersion.
Practical significance. The use of wavelet analysis made it possible to obtain new quantitative characteristics characterizing the instability of the QFS operation.
- Allan D.W. Statistics of atomic frequency standards. Proc. IEEE. 1966. V. 54(2). P. 221−230.
- Riehle Fr. Frequency Standards. Basic and Applications. Wiley-VCH. 2004.
- Chirkov A.G., Matisov B.G. Sovremennaya teoriya stabilnosti pretsizionnykh generatorov. SPb.: Izd-vo Politekhnicheskogo universiteta. 2010. (in Russian)
- Vanier J. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B. 2005. V. 81. P. 421−442.
- Zibrov S.A., Velichanskii V.L., Zibrov A.S., Taichenachev A.V., Yudin V.I. Eksperimentalnoe issledovanie temnogo psevdorezonansa na D1 linii 87Rb pri vozbuzhdenii lineino polyarizovannym polem . Pisma v ZhETF. 2005. T. 82. S. 534−538. (in Russian)
- Margolis H.S. Trapped ion optical clocks. Eur. Phys. J. Spec. Top. 2009. V. 172. P. 97−107.
- Ye J., Kimble H.J., Katori H. Quantum state engineering and precision metrology using state-insensitive light traps. Science. 2008. V. 27. P. 1734−1738.
- Bloom B.J., Nicholson T.L., Williams J.R., Campbell S.L., Bishof M., Zhang X., Zhang W., Bromley S.L., Ye J. An optical lattice clock with accuracy and stability at the 10− 18 level. Nature. 2014. V. 506. P. 71−75.
- Chou C.W., Hume D.B., Koelemeij J.C.J., Wineland D.J., Rosenband T. Frequency Comparison of Two High-Accuracy Optical Clocks. Phys. Rev. Lett. 2010. V. 104. P. 070802-070809.
- Affolderbach Ch, Droz F., Mileti G. Experimental demonstration of a compact and high-performance laser-pumped rubidium gas cell atomic frequency standard. IEEE Transactions on Instrumentation and Measurement. 2006. V. 55. № 2. P. 429−435.
- Hinkley N., Sherman J.A., Phillips N.B., Schioppo M., Lemke N.D., Beloy K., Pizzocaro M., Oates C.W., Ludlow A.D. An atomic clock with 10–18 instability. Science. 2013. V. 341. № 6151. P. 1215−1218.
- Kazakov G.A., Litvinov A.N., Romanenko V.I., Yatsenko L.P., Romanenko A.V., Schreitl M., G. Winkler G., Schumm T. Performance of a 229Thorium solid-state nuclear clock. New Journal of Physics. 2012. V. 14. P. 083019.
- Barantsev K.A., Popov E.N., Litvinov A.N., Petrov V.M. Analiz kratkovremennoi stabilnosti i svetovykh sdvigov kvantovogo standarta chastoty na osnove effekta kogerentnogo pleneniya naselennostei v gazovoi yacheike s atomami 87Rb. Radiotekhnika. 2016. T. 12. S. 164−170. (in Russian)
- Addison P.S. The illustrated wavelet transform handbook. Introductory theory and application in Science, engineering, medicine and finance. Edition 2nd. CPC Press. 2017.
- Hramov A.E., Koronovskii A.A., Makarov V.A., Pavlov A.N., Sitnikova E. Wavelets in neuroscience, Springer Series in Synergetics, Springer-Verlag. Berlin: Heidelberg. 2015.
- Mallat S. A Wavelet Tour of Signal Processing, Edition 3rd. Academic Press. New York. 2008.
- Nazimov A.I., Pavlov A.N., Khramov A.E., Grubov V.V., Sitnikova E.Yu., Koronovskii A.A. Adaptivnyi metod raspoznavaniya kharakternykh ostsillyatornykh patternov na osnove veivlet-preobrazovaniya. Radiotekhnika i elektronika. 2013. T. 58. № 8. S. 789−795. (in Russian)
- Tolmacheva R.A., Obukhov Yu.V., Polupanov A.F., Zhavoronkova L.A. Novyi podkhod k otsenke mezhkanalnoi fazovoi svyazannosti elektroentsefalogramm. Radiotekhnika i elektronika. 2018. T. 63. № 9. S. 1009−1014. (in Russian)
- Mansfeld A.D. K vychisleniyu veivleta Morle dlya analiza dinamiki otklikov signalov elektroentsefalogrammy. Radiotekhnika i elektronika. 2012. T. 57. № 4. S. 468−469. (in Russian)
- Kuzovnikov A.V. Issledovanie metodov postroeniya pomekhoustoichivykh sistem svyazi s ispolzovaniem veivlet-modulirovannykh signalov. Radiotekhnika i elektronika. 2014. T. 59. № 1. S. 67−68. (in Russian)
- Shakhtarin B.I., Sidorkina Yu.A., Khodunin A.V. Issledovanie khaoticheskoi sinkhronizatsii kaskadno-svyazannykh sistem fazovoi avtopodstroiki s primeneniem veivlet-analiza. Radiotekhnika i elektronika. 2017. T. 62. № 11. S. 1097−1105. (in Russian)
- Pavlov A.N., Khramov A.E., Koronovskii A.A., Sitnikova E.Yu., Makarov V.A., Ovchinnikov A.A. Veivlet analiz v neirodinamike . Uspekhi fizicheskikh nauk. 2012. T. 182. № 9. S. 905−939. (in Russian)
- .Bozhokin S.V., Continuous Wavelet Transform and Exactly solvable Model of Nonstationary Signals. Technical Physics, 2012, V.57, N7, P.900−906,
- Bozhokin S.V., Suslova I.M., Double Wavelet Transform of Frequency-Modulated Nonstationary Signal //Technical Physics, 2013, V.58, N12. P.1730−1736.
- Bozhokin S.V. Suslova I.B. Analysis of non-stationary HRV as a frequency modulated signal by double continuous wavelet transformation method. Biomedical Signal Processing and Control. 2014. V. 10. P. 34−40.
- Bozhokin S.V., Suslova I.B. Wavelet-based analysis of spectral rearrangements of EEG patterns and of non-stationary correlations. Physica A. 2015. V. 421. P. 151−160.
- Bozhokin S.V., Zharko S.V., Larionov N.V., Litvinov A.N., Sokolov I.M., Wavelet Correlation of Nonstationary Signals, Technical Physics, 2017, V.62., N6., pp.837−845.
- .Bozhokin S.V., .Sokolov I.M., Comparison of the Wavelet and Gabor Transforms in the Spectral Analysis of Nonstationary Signals// Technical Physics, 2018, Vol. 63, No. 12, pp. 1711–1717.