350 rub
Journal Radioengineering №8 for 2019 г.
Article in number:
Algorithm for measuring the size of radar images of cars in vehicle collision avoidance radars
Type of article: scientific article
DOI: 10.18127/j00338486-201908(11)-01
UDC: 621
Authors:

D.A. Okhotnikov – Ph.D.(Eng.), Associate Professor, 

Department 410, Moscow Aviation Institute (National Research University) E-mail: denisoffice@ya.ru

Bui Shi Khan – Post-graduate Student, 

Department 410, Moscow Aviation Institute (National Research University)

E-mail: buisyhanh1979@gmail.com

Abstract:

An important task in driving a car is to represent the size of various objects, their speed, their location on the road. These data help the driver make a decision in advance by maneuvering or braking if necessary. An algorithm has been developed and the results of measuring the size of a radar image (RLI) of road objects in an automobile radar system (ARLS) for collision avoidance have been considered. The results of the application of the algorithm in the processing of radar data of vehicles obtained on the basis of fullscale tests of an experimental model of radar radar are presented. The statistical characteristics of the vehicle radar are analyzed. The results of the analysis of stability and angle dependence of the vehicle radar, which are the basis for determining their overall dimensions, are presented. An analysis of the results shows that the width of the radar sections in range and azimuth of various traffic objects is a fairly stable and informative parameter and can be used for an automated procedure for their subsequent classification.

Processing of real signals proves the effectiveness of the developed algorithm. Errors in measuring the dimensions of cross-sections of car models are commensurate with real average values. The radar size measurement algorithm can be used to measure the radar dimensions of various TOs in the movement of radar for moving or stationary objects.

Pages: 5-12
References
  1. Sysoeva S. Aktualnye tekhnologii i primeneniya datchikov avtomobilnykh sistem aktivnoi bezopasnosti. Komponenty i tekhnologii. 2006. № 8−11. 2007. № 2−4, 8. (In Russian).
  2. Parnes M. Primenenie radarnykh datchikov v avtomobile. Komponenty i tekhnologii. 2008. № 1. S. 41−44. (In Russian).
  3. Nuzhdin V.M. i dr. Sistema radiovideniya «Avtoradar». Upravlenie dvizheniem avtomobilya. Elektronika: nauka, tekhnologiya, biznes. 2000. № 5. S. 48−51. (In Russian).
  4. Yoshida T., Kuroda H., Nishigaito T. Adaptive Driver-assistance Systems. URL = http://www.hitachi.com/ICSFiles/afieldfile/2004/1l/26/ r2004_04_104_l.pdf.
  5. McConnell D. New Directions in Automotive Smarts. Continental Automotive Systems. Sensors. April 2006.
  6. Automotive Cameras for Safety and Convenience Applications. White Paper by SMaL Camera Technologies, Inc. 2004. Version 1.
  7. Ananenkov A.E., Konovaltsev A.V., Nuzhdin V.M., Rastorguev V.V., Sokolov P.V. Optical and Microwave Technologies for Telecommunication Networks. Ed. by Otto Strobel. Chapter 11. Optical Data-Bus and Microwave Systems for Automotive Application in Vehicles, Airplanes and Ships. Wiley-Blackwell, John Wiley & Sons, Ltd. United Kingdom. 2016.
  8. Ananenkov A.E., Nuzhdin V.M., Rastorguev V.V. i dr. Osobennosti radiolokatsionnykh obrazov v sistemakh radiovideniya MMdiapazona. Innovatsii. 2005. № 6. S. 98−104. (In Russian).
  9. Ananenkov A.E., Nuzhdin V.M., Rastorguev V.V., Skosyrev V.N. Osobennosti otsenki kharakteristik obnaruzheniya v RLS maloi dalnosti. Radiotekhnika. 2013. № 11. S. 35−38. (In Russian).
  10. Ananenkov A.E., Nuzhdin V.M., Rastorguev V.V., Sokolov P.V. and Schneider V.B. System Radiovision for Movement Automation of the Vehicles Column. Proc. of 16th International Conference on Transparent Optical Networks – ICTON’2014. Graz, Austria. July 6th−10th, 2014. P. 1−6.
  11. Ananenkov A.E., Konovaltsev A.V., Nuzhdin V.M., Sokolov P.V., Skosyrev V.N. Statisticheskii podkhod k radiolokatsionnomu raspoznavaniyu obieektov po dalnostnym portretam. Trudy VI nauchno-tekhnich. konf. «Radioopticheskie tekhnologii v priborostroenii». Tuapse. 2008. (In Russian).
  12. Kuznetsov Yu.V., Baev A.B., Aleksandrov A.V. Signaturnaya identifikatsiya obieektov v sverkhshirokopolosnoi radiolokatsii. Doklady 5-i Mezhdunar. konf. «Tsifrovaya obrabotka signalov i ee primenenie». 2003. S. 249−251. (In Russian).
  13. Efimov E.N., Shevgunov T.Ya. Identifikatsiya tochechnykh rasseivatelei radiolokatsionnykh izobrazhenii s ispolzovaniem neironnykh setei radialno-bazisnykh funktsii. Trudy MAI. 2013. № 68. (In Russian).
  14. Turov V.E., Gvozdarev A.S., Krenev A.N., Polubekhin A.I., Ilin E.M. Primenenie radiogolograficheskogo podkhoda k zadache identifikatsii gruppovykh tselei v RLS KH-diapazona. Vestnik Sibirskogo universiteta potrebitelskoi kooperatsii. 2016. № 3. S. 139−147. (In Russian).
  15. Konovalyuk M.A., Kuznetsov Yu.V., Baev A.B. Identifikatsiya parametrov mnogotochechnoi tseli po kompleksnomu radiolokatsionnomu izobrazheniyu v shirokopolosnoi radiolokatsii. Materialy 3-j Mezhdunar. konf. «Akustoopticheskie i radiolokatsionnye metody izmerenii i obrabotki informatsii» (ARMIMP-2009). Suzdal: RNTORES im. A.S. Popova. 22−24 sentyabrya 2009. S. 48−52. (In Russian).
  16. Bui Shi KHan, Rastorguev V.V. Analiz kharakteristik radiolokatsionnykh signatur dorozhnykh obieektov v avtomobilnoi RLS preduprezhdeniya stolknovenii. Elektrosvyaz. 2017. № 8. S. 55−61. (In Russian).
  17. Davenport V.B., Rut V.L. Vvedenie v teoriyu sluchainykh signalov i shumov. M.: IL. 1960. 467 s. (In Russian).
  18. Shtager E.A. Rasseyanie radiovoln na telakh slozhnoi formy. M.: Radio i svyaz. 1986. 184 s. (In Russian).
  19. Borovikov V.A., Kinber B.E. Geometricheskaya teoriya difraktsii. M.: Svyaz. 1978. 248 s. (In Russian).
  20. Ufimtsev P.Ya. Metod kraevykh voln v fizicheskoi teorii difraktsii. M.: Sov. radio. 1962. 234 s. (In Russian).
  21. Markov G.T., Petrov B.M., Grudinskaya G.P. Elektrodinamika i rasprostranenie radiovoln: Ucheb. posobie dlya vuzov. M.: Sov. radio. 1969. 376 s. (In Russian).
Date of receipt: 25 июля 2019 г.