350 rub
Journal Radioengineering №10 for 2019 г.
Article in number:
Kalman filter with range-Doppler coupling compensation: choice of diffusion coefficients
Type of article: scientific article
DOI: 10.18127/j00338486-201910(15)-06
UDC: 621.396.96
Authors:

M.A. Murzova – Post-graduate Student, 

Moscow Institute of Physics and Technology (State University); Engineer, PJSC «Radiofizika» (Moscow)

E-mail: mariya.trofimenko@phystech.edu

Abstract:

In this paper, features of a tracking filter using linear frequency modulated (LFM) waveforms are studied. The use of LFM waveforms results in that the range measurements of moving objects are biased due to the range-Doppler coupling in the signal. Thus, the range-Doppler coupling error is taken into account in developing tracking filter.

An influence of diffusion process (or process noise) parameters on the tracking accuracies of diffusion filter is studied. The diffusion filter is defined as a two-state Kalman filter with introduction of additional term into covariance matrix of extrapolation errors. Besides that, an observation matrix includes a range-Doppler coupling coefficient. The additional term is determined by transition and covariance matrices of diffusion process. The expressions for transition and covariance matrices are derived from the equivalence of tracking accuracies of the diffusion filter in steady state and a fixed memory least squares filter. Also, the estimate covariance matrix of the diffusion filter coincides with an estimate covariance matrix of a diffusion filter whose an observation matrix doesn’t include the range-Doppler coupling coefficient and a filtered state estimate is corrected by a range-Doppler coupling error estimate after every filtering step.

Two different models of diffusion process satisfying described above requirements are provided. The model of diffusion process is determined by transition and covariance matrices. Besides that, study results give opportunity to choose the diffusion process parameters, so that to provide specified tracking accuracies of the diffusion filter.

Pages: 32-42
References
  1. Shirman Ya.D., Manzhos V.N. Teoriya i tekhnika obrabotki radiolokatsionnoi informatsii na fone pomekh. M.: Radio i svyaz. 1981. (in Russian)
  2. Fitzgerald R.J. Effect of Range-Doppler Coupling on Chirp Radar Tracking Accuracy. IEEE Transactions on Aerospace and Electronic Systems. 1974. V. AES-10. № 4. P. 528−532.
  3. Farber V.E. Analiz kharakteristik algoritmov opredeleniya parametrov dvizheniya kosmicheskikh apparatov po informatsii radiolokatsionnykh sredstv, ispolzuyushchikh zondiruyushchie signaly s lineinoi chastotnoi modulyatsiei. Kosmicheskie issledovaniya. 1995. T. 33. № 1. S. 31−35. (in Russian)
  4. Trofimenko M.A., Farber V.E. Otsenka vliyaniya nalichiya skorostnoi oshibki pri izmereniyakh dalnosti v RLS s LChM-signalom na granitsy ustoichivosti algoritmov otsenki dalnosti i radialnoi skorosti. Radiotekhnika. 2015. № 10. S. 7−16. (in Russian)
  5. Trofimenko M.A., Farber V.E. Otsenka vliyaniya skorostnoi oshibki na ustoichivost filtrov vtorogo poryadka. Radiotekhnika. 2016. № 4. S. 5−17. (in Russian)
  6. Trofimenko M.A., Farber V.E. Otsenka vliyaniya skorostnogo smeshcheniya v radiolokatsionnykh stantsiyakh s LChM-signalom na granitsy ustoichivosti soprovozhdeniya vkhodyashchikh v atmosferu kosmicheskikh ob’ektov. Trudy MFTI. 2015. T. 7. № 2. S. 156−166. (in Russian)
  7. Trofimenko M.A., Farber V.E. Influence of range-Doppler coupling on the tracking stability of reentering space objects. 2015 International Conference on Engineering and Telecommunication. IEEE. 2015. P. 40−44.
  8. Murzova M.A., Farber V.E. Skhodimost α-β filtra dlya razlichnykh znachenii koeffitsientov skorostnogo smeshcheniya. Radiotekhnika. 2018. № 10. S. 5−17. (in Russian)
  9. Murzova M.A., Farber V.E. The α-β Filter for Tracking Maneuvering Objects with LFM Waveforms. 2017 IVth International Conference on Engineering and Telecommunication. IEEE. 2017. P. 104−107.
  10. Murzova M.A. Otsenka vliyaniya skorostnoi oshibki po dalnosti na tochnostnye kharakteristiki filtra pervogo poryadka. Materialy XI Vseros. nauchno-tekhnich. konf. «Radiolokatsiya i radiosvyaz». 2017. S. 57−61. (in Russian)
  11. Murzova M.A., Farber V.E. Vybor koeffitsientov sglazhivaniya α-β filtra po kriteriyu minimuma dispersii summarnoi oshibki dlya RLS s LChM-signalom. Radiotekhnika. 2018. № 4. S. 5−16. (in Russian)
  12. Murzova M.A., Farber V.E. The Transient Response of αβ-Filter for Tracking with LFM Waveforms. Fifth International Conference on Engineering and Telecommunication. EnT-MIPT 2018. IEEE. 2018. P. 118−121.
  13. Saho K. Steady-State Performance Analysis of Tracking Filter Using LFM Waveforms and Range-Rate Measurement. Mathematical Problems in Engineering. 2018. V. 2018.
  14. Murzova M.A., Farber V.E. Sravnenie sposobov kompensatsii skorostnoi oshibki po dalnosti v algoritmakh otsenki dalnosti i radialnoi skorosti. Radiotekhnika. 2019. № 4. S. 5−18. (in Russian)
  15. Trukhachev A.A. Primenenie impulsov s lineinoi chastotnoi modulyatsiei dlya avtosoprovozhdeniya tselei. Vestnik vozdushnokosmicheskoi oborony. 2019. № 1(21). S. 41−57. (in Russian)
  16. Jain V., Blair W.D. Filter Design for Steady-State Tracking of Maneuvering Targets with LFM Waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2009. V. 45. № 2. P. 765−773.
  17. Wong W., Blair W.D. Steady-state tracking with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. № 2. P. 701−709.
  18. Murzova M.A., Farber V.E. Analiz atmosfernogo filtra, adaptirovannogo k nalichiyu skorostnoi oshibki po dalnosti. Radiotekhnika. 2017. № 4. S. 5−14. (in Russian)
  19. Volochkov E.B. Izmerenie dalnosti LChM signalom pri neizvestnoi doplerovskoi chastote. Radiotekhnika. 1991. № 11. S. 17−19. (in Russian)
  20. McDonough M., Blair W.D. Steady-state tracking with FMCW radars. Proceedings of the 2018 Aerospace Conference. 2018. P. 1−7.
  21. Amishima T., Ito M., Kosuge Y. A measurement model for Cartesian coordinate tracking with linear FM chirp waveforms. Proceedings of the 41st SICE Annual Conference. SICE 2002. 2002. V. 1. P. 193−197.
  22. Ryabova-Oreshkova A.P. Filtry s effektivnoi konechnoi pamyatyu, realizuemye na TsVM posredstvom rekurrentnykh formul. Izvestiya AN SSSR. Tekhnicheskaya kibernetika. 1969. № 4. (in Russian)
  23. Tuzlukov V. Signal processing in radar systems. Tailor & Francis Group. 2013.
  24. Farber V.E. Osnovy traektornoi obrabotki radiolokatsionnoi informatsii v mnogokanalnykh RLS. Ucheb. posobie. M.: MFTI. 2005. (in Russian)
  25. Li R. Optimalnye otsenki, opredelenie kharakteristik i upravlenie. M.: Nauka. 1966. (in Russian) 26. Eli Brookner. Tracking and Kalman Filtering Made Easy. John Wiley & Sons, Inc.1998.
Date of receipt: 13 сентября 2019 г.