A.A. Potapov – Member of Russian A.M. Prokhorov Academy of Engineering Sciences, Dr.Sc.(Phys.-Math.), Professor, Main Research Scientist, Kotel'nikov IRE of RAS (Moscow) E-mail: potapov@cplire.ru
This work represents the first paper from a papers' cycle which are devoted not to energy but textural and fractal detectors of targets in the presence of the high intensity noise and interferences from the surface of earth and sea for low angles of incidence and sliding angles of a probing wave and also for complex weather conditions. According to the author's classification, this new detectors' class is referred to topological ones which are divided into textural, fractal, entropy ones and so on. The main postulate of topological detectors which has been proposed by the author is «Maximum of topology at the minimum of energy». The work is basically based on the available papers of specialists from China and USA. In Russia and in the world the author and his pupils (V.A. Kotelnikov IREE RAS) have priority in development of theory and methods of designing such topological detectors of targets.
This work develops the fractal model on a «simple-to-complex» basis, systematically introduces the fractal theory into regular radar practice of target detection using a one-dimensional sampling and SAR images. Fractal methods of detection of an artificial target on the natural background imply application of the fractal dimension, Hurst exponent, fractal signature, multi-fractal spectrum and other parameters. Due to its development the fractals theory plays an important part in targets detection being the very important complement to the conventional energy target detection now. In the future the fractal theory with no doubts will occupy its worthy individual place in radio location. Results of various applications of fractal methods of target detection using the signal structure function which depends on the signal-to-noise ratio not so much are quite encouraging but as everything fundamentally new (especially in radio location) require its understanding and comprehension by large groups of hardware developers and also overcoming a certain psychological barrier in thinking due to the new mathematical apparatus.
Today, an important factor which restrains using of fractal characteristics in applications to targets detection is the accurate estimation of fractal parameters over big data sets on a real-time basis. By combining the fractals theory and the statistical processing method using transformations from the function theory (Fourier transform, fractional Fourier transform, Hilbert transform and so on) we will get performance of fractal methods improved on a real-time basis. It is of great importance and will actively facilitate the fractal theory development in the target detection field.
- Mandelbrot B. The Fractal Geometry of Nature. San Francisco: Freeman. 1982. 468 p.
- Potapov A.A. Fraktaly’ v radiofizike i radiolokaczii. M.: Logos. 2002. 664 s.
- Bunkin B.V., Reutov A.P., Potapov A.A. i dr. Voprosy’ perspektivnoj radiolokaczii. M.: Radiotexnika. 2003. 512 s.
- Potapov A.A. Fraktaly’ v radiofizike i radiolokaczii: Topologiya vy’borki. Izd. 2-e, pererab. i dop. M.: Universitetskaya kniga. 2005. 848 s.
- Yunhan Dong. Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter // DSTO-RR-0316.- Edinburgh, South Australia: Defense Science and Technology Organisation, Electronic Warfare and Radar Division. 2006. 71 p.
- Yanzhao Gao, Ronghui Zhan, Jianwei Wan, Jiemin Hu, and Jun Zhang. CFAR Target Detection in Ground SAR Image Based on KK Distribution // Progress in Electromagnetics Research. 2013. V. 139. P. 721−742.
- Liu Ning-bo, Guan Jian, Song Jie, Wang Guo-qing, He You. Application of Target Detection Based on Fractal Theory // Modern Radar (Kitaj). 2012. V. 34. № 2. P. 12−18 (na kitajskom yazy’ke).
- Savaidis S., Frangos Y. Scattering from Fractally Corrugated Surface: an Exact Approach // Optics Letters. 1995. V. 20. № 23. P. 2357−2359.
- Lo T., Leung H., Haykin S. Fractal Characterization of Sea-Scattered Signals and Detection of Sea-Surface Targets // IEE Proc.-F. 1993.
- 140. № 4. P. 243−250.
- Chang Y.C., Chang S. A Fast Estimation Algorithm on the Hurst Parameter of Discrete-Time Fractional Brownian Motion // IEEE Trans. on Signal Processing. 2002. V. 50. № 3. P. 554−559.
- Salmasi M., Hashemi M.M. Design and Analysis of Fractal Detectors for High Resolution Radars // Chaos, Solitons and Fractals. 2009.
- 40. P. 2133−2145.
- Liu Zhong, Cu Hong, Zhu Zhiwen, et al. Fractal Dimensions of Doppler Signals of Moving Targets // Signal Processing (Kitaj). 1995. V. 11. № 1. P. 62−64 (na kitajskom yazy’ke).
- Seyed A. Madanizadeh Mohammad M. Nayebi. Signal Detection using the correlation coefficient in Fractal Geometry // Proc. IEEE Radar Conf. Boston, MA: IEEE Press. 2007. P. 481−486.
- Zhou Y.f., Leung H. On the Efficient Prediction of Fractal Signals // IEEE Trans. on Signal Processing. 1997. V. 45. № 7. P. 1865−1868.
- Du Can, Zhang Shouhong. Radar Ship Targets Detection Based on Fractal Model // Chinese Journal of Radio Science (Kitaj). 1998. V. 13. № 4. P. 377−381 (na kitajskom yazy’ke). элементнаябаза
- Xie Wenlu, Zhang Qianling, Chen Yanhui, et al. The Study of Signal Detection in Clutter by Fractal Methods // Journal of Electronics (Kitaj). 1999. V. 21. № 5. P. 628−633 (na kitajskom yazy’ke).
- Xu X.K. Low Observable Targets Detection by Joint Fractal Properties of Sea Clutter: an Experimental Study of IPIX Ohgr Datasets // IEEE Trans. on AP. 2010. V. 58. № 4. P. 1425−1429.
- Liu Ningbo, Guan Jian. Judgment of Multifractal and Auto-Computing of Generalised Dimension Spectrum Based on Sea Clutter // Journal of Naval Aeronautical and Astronautical University (Kitaj). 2008. V. 23. № 02. P. 126−131 (na kitajskom yazy’ke).
- Kamigo K., Yamanouchi A. Signal Processing Using Fuzzy Fractal Dimension and Grade of Fractality-Application to Fluctuations in Seawater Temperature // IEEE Symposium on Computational Intelligence in Image and Signal Processing. Hondulu. HI: IEEE Press. 2007. P. 133−138.
- Guan Jian, Liu Ningbo, Zhang Jian, et al. Low-Observable Target detection within Sea Clutter Based on LGF // Signal Processing (Kitaj). 2010. V. 26. № 1. P. 69−73 (na kitajskom yazy’ke).
- Kaplan L.M., Jay Kuo C.C. Fractal Estimation from Noisy Data via Discrete Fractional Gaussian Noise // IEEE Trans. on Signal Processing. 1993. V. 41. № 12. P. 3554−3562.
- Kaplan L.M., Jay Kuo C.C. Extending Self-Similarity for Fractional Brownian Motion // IEEE Trans. on Signal Processing. 1994. V. 42. № 12. P. 3526−3530.
- Kaplan L.M. Extended Fractal Analysis for Texture Classification and Segmentation // IEEE Trans. on Image Processing. 1999. V. 8. № 11. P. 1572−1585.
- Du Can, Zhang Shouhong. Radar Signal Detection Based on High-Order Fractal Feature // Acta Electronics Sinica (Kitaj). 2000. V. 28. № 3. P. 91−93 (na kitajskom yazy’ke).
- Du C., Zhang S.H. Detection of Sea-Surface Radar Target Based on Multifractal Analysis // IEE Electronics Letters. 2000. V. 36. № 13. P. 1144−1145.
- Du Can, Zhang Shouhong. Fuzzy Detection of Radar Ship Targets Based on Multifractal Analysis // Acta Automatic Sinica (Kitaj). 2001. V. 27. № 2. P. 174−179 (na kitajskom yazy’ke).
- Zheng Y., Cao J.B., Yao K. Multiplicative Multifractal Modeling of Sea Clutter // IEEE International Radar Conf.- Arlington, Virginia: IEEE Press. 2005. P. 962−966.
- Cao J.B., Yao K. Multifractal Features of Sea Clutter // IEEE Radar Conf.- Long Beach, CA: IEEE Press. 2002. P. 500−505.
- Xu J., Tung W.W., Cao J.B. Detecting of Low Observable Targets within Sea Clutter by Structure Function based Multifractal Analysis // IEEE Trans. on AP. 2006. V. 54. № 1. P. 136−143.
- Shi Zhiguang, Zhou Jianxiong, Fu Qiang. Sea Clutter Characteristic Analysis and Simulation Based on Multifractal Model // Journal of System Simulation (Kitaj). 2006. V. 18. № 8. P. 2289−2292 (na kitajskom yazy’ke).
- Shi Zhiguang, Zhou Jianxiong, Zhao Hongzhong. Multifractal Analysis of Radar Sea Clutter // Journal of Data Acquisition & Processing (Kitaj). 2006. V. 21. № 2. P. 168−173 (na kitajskom yazy’ke).
- Liu Ningbo, Guan Jian, Song Jie. Local Multifractal Haracteristic of Sea Clutter in Radar Scanning Mode for Targert Detection // Radar Science and Technology (Kitaj). 2009. V. 7. № 4. P. 277−283 (na kitajskom yazy’ke).
- Zhou Weixing, Wang Yanjie, Yu Zunhong. On the Multifractal and Multifractal Correlation of Random Binomial Measures // Journal of Nonlinear Dynamics in Science and Technology (Kitaj). 2001. V. 8. № 3. P. 199−207 (na kitajskom yazy’ke).
- Guan J., Liu N.B., Zhang J., et al. Multifractal Correlation Characteristic for Radar Detecting Low-Observable Target in Sea Clutter // Signal Processing. 2010. V. 90. № 2. P. 523−535.
- Wang Guo You, Zhang Tianxu, Wei Luogang. A Method for Target Detection using Multiscale Fractal // Acta Automatica Sinica (Kitaj). 1997. V. 23. № 1. P. 121−124 (na kitajskom yazy’ke).
- Du P.F., Wang Y.l., Tang Z.Y. Radar Target Novel Characteristic Detection Method // IEEE AES Magazine. 2006. P. 29−32.
- Chen Yanhui, Xie Weixin. Detection of Radar Target in Clutter from Natural Rough Surface // Acta Electronica Sinica (Kitaj). 2000. V. 28. № 7. P. 138−141 (na kitajskom yazy’ke).
- Zhang Shuning, Xiong Gang, Xhao Huichang. The Method of Wavelet Spectral Correlation in Processing Fractal Stochastic Noise // Acta Electronica Sinica (Kitaj). 2005. V. 33. № 7. P. 1213−1217 (na kitajskom yazy’ke).
- Zhao M., Fan Y.H., Lv J. Chaotic Time Series Gray Correlation Local Forecasting Method Based on Fractal Theory // 3rd International Workshop on Signal Design and Its Applications in Communications. Chengdu, China: IEEE Press. 2007.
- He Tao, Zhou Zhengou. Prediction of Chaotic Time Series Based on Fractal Self-Affinity // Acta Physica Sinica (Kitaj). 2007. V. 56. № 2. P. 693−701 (na kitajskom yazy’ke).
- Liu Ningbo, Li Xiaojun, Li Xiuyou, et al. Target Detection in Sea Clutter Based on Fractal Self-Affine Prediction // Modern Radar (Kitaj). 2009. V. 31. № 4. P. 43−50 (na kitajskom yazy’ke).
- Gupta A., Joshi S.D. Variable Step-Size LMS Algorithm for Fractal Signals // IEEE Trans. on Signal Processing. 2008. V. 56. № 4. P. 1411−1419.
- Liu Ningbo, Guan Jian, Zhang Jian. Low-Observable Target Detection in Sea Clutter Based on Fractal-Based Variable Step-Size LMS Algorithm // Journal of Electronics & Information Technology (Kitaj). 2010. V. 32. № 2. P. 371−376 (na kitajskom yazy’ke).
- Potapov A.A. Sintez izobrazhenij zemny’x pokrovov v opticheskom i millimetrovom diapazonax voln. Dis. … dokt. fiz.-mat. nauk (Speczial’nost’ 01.04.03). M.: IRE’ RAN. 1994. 436 s.
- Potapov A.A., Gulyaev Yu.V., Nikitov S.A., Paxomov A.A., German V.A. Novejshie metody’ obrabotki izobrazhenij / Pod red. A.A. Potapova. M.: FIZMATLIT, 2008. 496 s. (monografiya po grantu RFFI № 07-07-07005).
- Pentland A.P. Fractal-Based Description of Natural Scenes // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1984. V. 6. № 6. P. 661−674.
- Chauduri B.B., Nirnpam S. Texture Segmentation Using Fractal Dimension // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1995. V. 17. № 61. P. 72−77.
- Zheng Y., Cao J.B., Yao K. Multiplicative Multifractal Modeling of Sea Clutter // IEEE International Radar Conf.- Arlington, Virginia: IEEE Press. 2005. P. 962−966.
- Berizzia F., Gamba P., Garzelli A., et al. Fractal Analysis and Validation of a Sea-Surface Fractal Model for SAR Imagery // SPIE EUROPTO Conf. on Remote Sensing of the Ocean and the Sea Ice.- Florence, Italy: SPIE. 1999. P. 612−621.
- Keller J.N., Grownover R.M., Chen R.Y. Characteristic of Natural Scebes Related to the Fractal Dimension // IEEE Trans. on Image Processing. 2001. V. 10. № 5. P. 792−797.
- Wornell G. Signal Processing with Fractals: A Wavelet-Based Approach. Upper Saddle River, NJ: Prentice-Hall. 1996. 177 p. и элементнаябаза
- Stewart C.V., Moghaddam B., Hintz K., et al. Fractional Brownian Motion Models for Synthetic Aperture Radar Imagery Scene Segmentation // Proceedings of the IEEE. 1993. V. 81. № 10. P. 1511−1523.
- Stein M.C. Fractal Image Models and Object Detection // Proc. of SPIE. 1987. V. 845. P. 293.
- Benelli G., Garselli A. A Multi-Resolution Approach to Oil-Spills Detection in ERS-1 SAR Images // Proc. of SPIE. 1998. V. 3500. P. 145−156.
- Marghany M., Gracknell A.P., Hashim M. Modification of Fractal Algorithm for Oil Spill Detection from RADARSAT-1 SAR Data // International Journal of Applied Earth Observation and Geoinformation. 2009. V. 11. № 2. P. 96−102.
- Berizzi F., Bertini G., Martorella M. Two-Dimensional Variation Algorithm for Fractal Analysis of Sea SAR Images // IEEE Trans. on Geoscience and Remote Sensing. 2006. V. 44. № 9. P. 2361−2373.
- Cheng Dehao, Hu Fengming, Yang Ruliang. Study on Targert Detection of SAR Image Using Improved Fractal Features // Journal of Electronics & Information Technology (Kitaj). 2009. V. 31. № 1. P. 164−168 (na kitajskom yazy’ke).
- Garselli A. SAR Images Analysis of the Sea Surface by Local Fractal Dimension Estimation // Proc. of SPIE. 2003. V. 4885. P. 226−233.
- Li Yan, Peng Jiaxiong. The Target segmentation and Detection Based on Fractal Dimension Feature // Journal of Hua-Zhong University of Science & Technology (Kitaj). 2000. V. 28. № 8. P. 1−5 (na kitajskom yazy’ke).
- Stein G.W., Charalampidus D. Target Detection Using an Improved Fractal Scheme // Proc. of SPIE. 2006. V. 6237. P. 1−9.
- Wang Lidi, Huang Shabai, Shi Zelin. Automatic Detection of Moving Sea Target Based on Directional Fractal Dimension // Pattern Recognition and Artificial Intelligence (Kitaj). 2004. V. 17. № 4. P. 486−490 (na kitajskom yazy’ke).
- Andreev G.A., Potapov A.A. Analiz i sintez dvuxzonal’ny’x teksturny’x izobrazhenij // Tez. dokl. I Vsesoyuznoj konf. po iskusstvennomu intellektu (Pereslavl’-Zalesskij, 21−25 fevralya 1988). M.: Izd-vo VINITI. 1988. T. 2. S. 104−108.
- Potapov A.A. Statisticheskij podxod k opisaniyu izobrazhenij tekstur zemnoj poverxnosti v opticheskom i radiodiapazone // Tez. dokl. Vses. konf. «Matematicheskie metody’ raspoznavaniya obrazov (MMRO-IV)» (Riga, 24−26 oktyabrya 1989). Riga: Izd. MIPKRRiS. 1989. Ch. 4. S. 150−151.
- Potapov A.A. Fraktaly’ v radiofizike i radiolokaczii // Tez. dokl. Regional’noj XXIII konf. po rasprostraneniyu radiovoln (Sankt-Peterburg, 28−29 oktyabrya 1997). SPb.: Izd. SPGU. 1997. S. 25.
- Potapov A.A., German V.A. Obnaruzhenie iskusstvenny’x ob’‘ektov s pomoshh’yu fraktal’ny’x signatur // Tez. dokl. 3-j Vseros. s uchastiem stran SNG konf. «Raspoznavanie obrazov i analiz izobrazhenij: novy’e informaczionny’e texnologii» (Nizhnij Novgorod, 1−7 dekabrya 1997). N. Novgorod: Izd. NII PMK pri NNGU. 1997. Ch. 1. S. 213−217.
- Potapov A.A., Chekanov R.N. Rasseyanie voln fraktal’ny’mi poverxnostyami // Tez. dokl. LII Nauchnoj sessii, posv. Dnyu Radio (Moskva, 21−22 maya 1997). M.: RNTO RE’S im. A.S. Popova. 1997. T. 1. S. 171−172.
- Potapov A.A., Sokolov A.V., Chekanov R.N. Primenenie teorii fraktalov k izucheniyu fluktuaczij na MMV // Tez. dokl. LII Nauchnoj sessii, posv. Dnyu Radio (Moskva. 21−22 maya 1997). M.: RNTO RE’S im. A.S. Popova. 1997. T. 1. S. 167−168.
- Potapov A.A., German V.A. Detection of Artificial Objects with Fractal Signatures // Pattern Recognition and Image Analysis. 1998. V. 8. № 2. P. 226−229.
- Potapov A.A., German V.A. Primenenie fraktal’ny’x metodov dlya obrabotki opticheskix i radiolokaczionny’x izobrazhenij zemnoj poverxnosti // Radiotexnika i e’lektronika. 2000.T. 45. № 8. S. 946−953.
- Potapov A.A. Fraktaly’ v radiofizike i radiolokaczii. E’lementy’ teorii fraktalov // Radiotexnika i e’lektronika. 2000. T. 45. № 11. S. 1285−1292.
- Kaplan L.M., Murenzi R., Namiduri K. Extended Fractal Feature for First-Stage SAR Target Detection // Proc. of SPIE. 1999. V. 3721. P. 35−46.
- Potapov A.A. Fraktaly’ v distanczionnom zondirovanii // Zarubezhnaya radioe’lektronika. Uspexi sovremennoj radioe’lektroniki. 2000. № 6. S. 3−65.
- Kaplan L.M. Improved SAR Target Detection via Extended Fractal Feature // IEEE Trans. on AES. 2001. V. 37. № 2. P. 436−451.
- Hu Xiaobin, Wu Manqing, Zhang Changyao. Application of Extended Fractal with B-CFAR to Target Detection on SAR Image // Radar Science and Technology (Kitaj). 2004. V. 2. № 5. P. 279−283 (na kitajskom yazy’ke).
- Zhang Gong, Cao Junfang. Application of Extended Fractal Feature in Target Sized Objects Detection of SAR Image // Journal of Nanjing University of Aeronautics & Astronautics (Kitaj). 2004. V. 36. № 3. P. 378−382 (na kitajskom yazy’ke).
- Yu Yi, Liu Dong. Realization of Target Detection Algorithm on SAR Image Combining Extended Fractal with DP-CFAR on ADSP-TS201 // Electronic Components & Device Applications (Kitaj). 2008. V. 10. № 10. P. 55−61 (na kitajskom yazy’ke).
- Wang Yang, Lu Jiaguo, Zhang Changyao. Application of Extended Fractal to target Detection of Polarimetric Radar // Radar Science and Technology (Kitaj). 2004. V. 2. № 4. P. 201−205 (na kitajskom yazy’ke).
- Martines P., Schertzer D., Schmitt F., et al. Polarization Influence in a Multifractal Processing for Terrain Classification on a SAR Image // EUSAR' 96, European Conf. on SAR. Konigswinter. Germany: VDE-Verlag. 1996. P. 93−96.
- Martines P., Schertzer D., Pham K.K. Texture Modelisation by Multifractal Processes for SAR Image Segmebtation // RADAR 97. Edinburgh, UK: IEEE Press. 1997. P. 135−139.
- Du G., Yeo T.S. A Novel Multifractal Estimation Method and Its Application to Remote Image Segmentation // IEEE Trans. on Geoscience Remote Sensing. 2002. V. 40. № 4. P. 980−982.
- Zhao Jian, Song Zuxun, Yu. Bianzhang. On Deno Ising SAR Image by Processing Based on Multifractal Analysis // Journal of Northwestern Polytechnical University (Kitaj). 2003. V. 21. № 1. P. 30−33 (na kitajskom yazy’ke).
- Mendivil F. Image Processing with Wavelets and Multifractal Analysis // Summer School «Wavelets and Multifractal Analysis». Corsica, France; Institut d' Études Scientifiques de Cargèse. 2004. 72 p. (http://perso.ens-lyon.fr/paulo.goncalves/WAMA2004/ lectures/Mendivil-lecture.pdf).
- Wendt H., Roux S.G., Arby P. Impact of Data Quantization on Empirical Multifractal Analysis // ICASSP, IEEE International Conf. on Acoustics, Speech and Signal Processing.- Honolulu, HI: IEEE Press. 2007. V. 3. P. 1161−1164.
- Potapov A.A. Fizicheskie osnovy’ i princzipy’ postroeniya fraktal’ny’x radarov i fraktal’ny’x sensorov: Novoe napravlenie – fraktal’ny’j analiz i ego primenenie v teorii statisticheskix reshenij i v statisticheskoj radiotexnike // Radioe’lektronika. Nanosistemy’. Informaczionny’e texnologii-RE’NSIT. 2017. T. 9. № 2. S. 129−138.
- Potapov A.A. Fractal and topological sustainable methods of overcoming expected uncertainty in the radiolocation of low-contrast targets and in the processing of weak multi-dimensional signals on the background of high-intensity noise: A new direction in the statistical decision theory // IOP Conf. Ser.: Journal of Physics. 2017. V. 918. № 012015. https://doi.org/10.1088/1742-6596/918/1/012015. 19 p.