350 rub
Journal Radioengineering №1 for 2019 г.
Article in number:
The algorithm of segmentation of the geometry of a dielectric object by the parameter of smallness of the target effect of observation. stratification of Luneburg lens
Type of article: scientific article
DOI: 10.18127/j00338486-201901-02
UDC: 51.74+537.871
Authors:

K.M. Zeide – Leading Engineer, Institute of Radioelectronics and Information Technology of Ural Federal University E-mail: k.m.zeyde@urfu.ru

A.N. Korotkov – Senior Lecturer, Institute of Radioelectronics and Information Technology of Ural Federal University E-mail: an.korotkov@urfu.ru

Abstract:

In this paper, the algorithm for segmentation the geometry of a dielectric object is described in detail. Features of the algorithm: the possibility of a priori evaluation of the accuracy of simulation results and taking into account the degree of smallness of the target effect of observation. The algorithm is generalized and applicable to a wide class of electrodynamics problems. The first section of the work gives the basic metrological and physical provisions. The second section is devoted to the description of an isolated layer. The third section contains the mathematical apparatus and the scheme of the stratification algorithm. The following is the numerical justification of the optimized algorithm for the example of calculating the directivity of a Luneburg lens antenna. The analysis of the obtained results is given.

Pages: 15-23
References
  1. Li Na NG. Manipulation of particles on optical waveguide. PhD thesis, University of Southampton. 2000. 176 p.
  2. Pelosi G., Possenti L., Selleri S., Pinto I.M. Baffle diffraction in interferometric detectors of gravitational waves // ACES Journal. 2017. V. 32. № 7. P. 569−574.
  3. Zejde K.M. Mnogofaktornaya nelinejnaya optimizacziya nerelyativistskogo e’ksperimenta po rasseyaniyu e’lektromagnitny’x voln ot vrashhayushhixsya czelej // Nelinejny’j mir. 2017. T. 15. № 5. S. 11−17.
  4. Fuchs B., Le Coq L., Lafond O., Rondineau S., Himdi M. Design optimization multishell Luneburg lenses // IEEE Trans. on antennas and propagat. 2007. V. 55. № 2. P. 283−289.
  5. Tsang L., Kong J.A. Application of the radio-frequency interferometry method to a stratified anisotropic medium. IEEE Trans. on antennas and propagat. 1975. V. 23. № 5. P. 725−728.
  6. Zejde K.M., Pirozhkov D.V. Realizacziya klasternogo metoda opisaniya anizotropnoj sredy’ v ramkax teorii vozmushhenij. // Sb. dokladov «Forum IT: global’ny’e vy’zovy’ i novy’e resheniya» pod red. A.V. Kruglova. M.: E’ditus. 2017. S. 80−86.
  7. Sze K.Y., Sabet K.F., Chun D. A decompose-solve-recompose (DSR) technique for large phased array antenna analysis // ACES Journal. 2003. V. 18. № 4. P. 11−18.
  8. Mironov E’.G., Orduyancz G.Zh. Novy’j metod oczenki pogreshnostej sredstv izmerenij // Ural Radio Engineering Journal. 2017. V. 1. № 1. S. 120−126.
  9. Zejde K.M. Oczenka optimal’noj prostranstvenno-vremennoj diskretizaczii v zadachax slezheniya za vrashhayushhimisya czelyami s ispol’zovaniem MDR // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. T. 21. 2016. № 5. S. 46−51.
  10. Lady’gin A.I., Luchin A.A. Approksimacziya tochnogo resheniya zadachi difrakczii na provodyashhej sfere // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2003. T. 8. № 9. S. 20−25.
  11. Tixov V.A., Yaczy’shen V.V. Oczenka primenimosti Re’leevskogo priblizheniya dlya rasseivayushhix material’ny’x sred // Fizika volnovy’x proczessov i radiotexnicheskie sistemy’. 2007. T. 10. № 4. S. 35−40.
  12. Kleinman R.E., Senior T.B.A. Rayleigh scattering cross section // Radio Science. 1972. V. 7. № 10. P. 937−942.
  13. Zeyde K.M. Setting and physical rationale of heterogeneous turning scatterer system mesh optimization // ICECom Proceedings. Dubrovnik. 2016.
  14. Patitsas A.J. Size determination of a perfectly conducting sphere from the extrema Mie scattering intensities // IEEE Trans. on antennas and propagat. 1973. V. 21. № 2. P. 243−245.
  15. Korotkov A.N., Shabunin S.N., Chechetkin V.A. The cylindrical Luneburg lens discretization influence on its radiation parameters // SIBIRCON Proceedings. Novosibirsk. 2017. P. 394−398.
  16. Korotkov A.N., Mitel’man Yu.E.,Chechetkin V.A., Shabunin S.N. Raschet polya izlucheniya czilindricheskoj linzy’ Lyuneburga na osnove funkczij Grina radial’no-neodnorodny’x sred // Zhurnal radioe’lektroniki (e’lektronny’j zhurnal). 2017. № 2. S. 1−19.
  17. Korotkov A.N., Mitelman Yu.E. Simulation of spherical Luneburg lens using numerical electrodynamic methods // ITTCS Proceedings. Ekaterinburg. 2017. P. 79−86.
  18. Kuz’min S.V. Parametry’ sloev dlya mnogoslojnoj linzy’ Lyuneberga // Pis’ma v ZhTF. 2004. T. 30. № 22. S. 37−43.
  19. Georgoulis E.H., Pryer T. Recover finite element methods // Computer Methods in Applied Mechanics and Engineering. 2018. V. 332. P. 303−324.
Date of receipt: 15 мая 2018 г.