350 rub
Journal Radioengineering №6 for 2017 г.
Article in number:
Identification anomalies the time series of metrics of project based on entropy measures
Type of article: scientific article
UDC: 511.72
Authors:

I.A. Timina – Assistant, Department «Information Systems», Ulyanovsk State Technical University E-mail: i.timina@ulstu.ru

E.N. Egov – Assistant, Department «Information Systems», Ulyanovsk State Technical University

E-mail: kater73ru@rambler.ru

Yu.P. Egorov – Dr. Sc. (Eng.), Professor, Main Research Scientist, FRPC OJSC «RPA «Mars» (Ulyanovsk) E-mail: yupe@mail.ru

D.V. Yashin – Assistant, Department «Information Systems», Ulyanovsk State Technical University E-mail: dv.yashin@ulstu.ru

S.K. Kiselev – Dr. Sc. (Eng.), Professor, Head of Department «Measuring and Computing Systems», Ulyanovsk State

Technical University

E-mail: ksk@ulstu.ru

Abstract:

In this paper, we propose an approach to optimizing the solution of the problem of forecasting time series. Optimization of the solution consists in using an aggregator to select the forecasting methods that will give the best forecast. When choosing methods, the time series features are taken into account. The aggregator uses methods of machine learning to select methods. The aggregator is built into the information system «Combination of fuzzy and exponential models». Two forecasting methods are also added to the system.

Pages: 128-135
References
  1. Timina I.A. Nechetkaya zavisimost' vremenny'x ryadov v modelirovanii i prognozirovanii sostoyaniya organizaczii // Sb. nauchny'x trudov 5-j Vseros. nauchno-texnich. konf. «Informatika i vy'chislitel'naya texnika». Maj 2013. S. 228−234.
  2. Artyuxov M.V., Yarushkina N.G., Romanov A.A., Gus'kov G.Yu., Timina I.A. Postroenie massiva metodov dlya prognozirovaniya vremenny'x ryadov // VIII Mezhdunar. nauchno-prakticheskaya konf. «Integrirovanny'e modeli i myagkie vy'chisleniya v iskusstvennom intellekte». Maj 2015. T. 1. S. 332−341.
  3. Artyuxov M.V., Yarushkina N.G., Romanov A.A., Gus'kov G.Yu., Timina I.A. Prognozirovanie vremenny'x ryadov kollektivami metodov // Radiotexnika. 2015. T. 6. S. 48−54.
  4. Yarushkina N.G., Voronina V.V., Timina I.A., E'gov E.N. Prognozirovanie sostoyaniya texnicheskoj sistemy' s primeneniem mery' e'ntropii dlya nechetkix vremenny'x ryadov // Avtomatizacziya proczessov upravleniya. 2015. T. 3(41). S. 49−58.
  5. Timina I.A. Prognozirovanie zavisimy'x nestaczionarny'x vremenny'x ryadov na osnove nechetkix e'lementarny'x tendenczij s uchetom regulirovaniya gipotezy' // Sb. materialov 48-j nauchno-texnich. konf. «Vuzovskaya nauka v sovremenny'x usloviyax». 2014. S. 182−185.
  6. Yarushkina N.G., Timina I.A. Algoritm adaptaczii prognoza zavisimy'x vremenny'x ryadov // 2-j Mezhdunar. Pospelovskij simpozium «Gibridny'e i sinergeticheskie intellektual'ny'e sistemy' GISIS’2014». 2014. S. 398−403.
  7. Yarushkina N.G. Osnovy' nechetkix i gibridny'x setej. M.: Finansy' i statistika. 2014.
  8. Yarushkina N.G., Afanas'eva T.V., Perfil'eva I.G. Intellektual'ny'j analiz vremenny'x ryadov: Ucheb. posobie. Ul'yanovsk: UlGTU. 2010.
  9. Computational Intelligence in Forecasting (CIF). URL = http://irafm.osu.cz/cif/main.php (data obrashheniya 10.04.2016).
  10. Vovk V.G. Universal Forecasting Algorithms // Journal of Information and Computation. 1992. V. 96. P. 245−277.
  11. Romanov A., Yarushkina N., Perfilieva I. Time series grouping on the basis of F1-transform // IEEE International Conference on FUZZY Systems. 2014.
  12. Kovalev S.M., Sokolov S.V., Kucherenko P.A. Intelligent processing of temporal data based on hybrid fuzzy-stochastic models// Automatic control and computer sciences. T. 49. № 1. 2015.
  13. Averkin A.N., Yarushev S.A., Povidalo I.S. Gibridny'e nejronny'e seti v zadachax prognozirovaniya vremenny'x ryadov // Nauchnaya sessiya NIYaU MIFI-2015. Annotaczii dokladov v 3-x tomax (otv. red. O.N. Golotyuk). 2015.
  14. Obzor modelej prognozirovaniya vremenny'x ryadov. URL = https://habrahabr.ru/post/180409/ (data obrashheniya 10.04.2016).
Date of receipt: 17 мая 2017 г.