350 rub
Journal Radioengineering №6 for 2017 г.
Article in number:
Application of a doubly stochastic autoregressive model for solving problems in satellite images processing
Type of article:
scientific article
UDC: 621.391.2
Keywords:
autoregression
random fields
satellite images
random processes
nonlinear filtering
Kalman filter
doubly stochastic model
parameter estimation.
Authors:
В.Е. Дементьев – к.т.н., доцент, кафедра «Телекоммуникации»,
Ульяновский государственный технический университет E-mail: vitawed@mail.ru
Abstract:
The problem of filtering satellite non-uniform images using the recurrent nonlinear filters obtained on the basis of a doubly stochastic autoregressive model is considered. The analysis of the obtained filtering algorithms is performed. A significant advantage of the proposed procedures is shown in comparison with the Kalman and Wiener filters.
Pages: 18-22
References
- Gonsales R., Vuds R. Czifrovaya obrabotka izobrazhenij. Izd. 3-e. M.: Texnosfera. 2012. 1104 s.
- Vasil'ev K.K., Krasheninnikov V.R. Statisticheskij analiz izobrazhenij. Ul'yanovsk: UlGTU. 2014. 214 s.
- Vasil'ev K.K. Optimal'naya obrabotka signalov v diskretnom vremeni. M.: Radiotexnika. 2016. 282 s.
- Vasil'ev K.K., Dement'ev V.E., Andriyanov N.A. Doubly stochastic models of images // Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015. T. 25. № 1. P. 105−110.
- Vasil'ev K.K., Dement'ev V.E., Andriyanov N.A. Oczenivanie parametrov dvazhdy' stoxasticheskix sluchajny'x polej // Radiotexnika. 2014. № 7. S. 103−106.
- Vasil'ev K.K., Dement'ev V.E., Andriyanov N.A. Application of mixed models for solving the problem on restoring and estimating image parameters // Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016. V. 26. № 1. P. 240−247.
Date of receipt: 17 мая 2017 г.