350 rub
Journal Radioengineering №4 for 2017 г.
Article in number:
Analyze of atmospheric filter adapted to range-Doppler coupling
Authors:
M.A. Murzova - Post-graduate Student, Moscow Institute of Physics and Technology (State University); Engineer, PJSC «Radiofizika» (Moscow) E-mail: mariya.trofimenko@phystech.edu V.E. Farber - Dr. Sc. (Eng.), Professor, Moscow Institute of Physics and Technology (State University); Head of Department, PJSC «Radiofizika» (Moscow) E-mail: vladeffar@mail.ru
Abstract:
In this paper, peculiarities of algorithms that are designed to track the re-entering space objects are studied. These space objects are detected by a chirp radar. Usage of linear frequency modulated signals results in so-called range-Doppler coupling, which yields a displacement of measured position from a true range of moving space objects. Therefore, it is necessary to synthesize Kalman filter, in which elements of the observation matrix and the error covariance matrix will include range-Doppler coupling coefficient. The syn-thesized Kalman filter is studied and its accuracy characteristics are analyzed in dependence on range-Doppler coupling coefficient and the filter\'s parameter. It is demonstrated that masking of incoming range measurements is available for some parameters of Kalman filter. In this case range estimation is calculated equal to extrapolated range estimation and filter is unstable. When unmasking of measurements is imposed steady-state Kalman filter is stable. The obtained results show that steady-state Kalman filter and Kalman filter is unstable around the masking point (i.e. where almost all incoming measurements are masked). It is determined that Kalman filter in steady - state is a filter with constant gain. Also the stability boundaries and the accuracy cha-racteristics of the algorithms estimating motion parameters of the reentering space objects were evaluated.
Pages: 5-14
References

 

  1. SHirman JA.D., Manzhos V.N. Teorija i tekhnika obrabotki radiolokacionnojj informacii na fone pomekh. M.: Radio i svjaz. 1981.
  2. Fitzgerald R.J. Effect of Range-Doppler Coupling on Chirp Radar Tracking Accuracy // IEEE Transactions on Aerospace and Electronic Systems. 1974. Vol. AES-10. № 4. P. 528−532.
  3. Trofimenko M.A., Farber V.E. Ocenka vlijanija skorostnojj oshibki na ustojjchivost filtrov vtorogo porjadka // Radiotekhnika. 2016. № 4. S. 5−17.
  4. Farber V.E. Osnovy traektornojj obrabotki radiolokacionnojj informacii v mnogokanalnykh RLS: Ucheb. posobie. M.: MFTI. 2005.
  5. Kuzmin S.Z. Osnovy proektirovanija sistem cifrovojj obrabotki radiolokacionnojj informacii. M.: Sov. radio. 1986.
  6. Eli Brookner. Tracking and Kalman Filtering Made Easy. John Wiley & Sons. Inc. 1998.
  7. Tuzlukov V. Signal processing in radar systems. Tailor & Francis Group. 2013.
  8. Rjabova-Oreshkova A.P. Filtry s ehffektivnojj konechnojj pamjatju, realizuemye na CVM posredstvom rekurrentnykh formul // Izv. AN SSSR. Tekhnicheskaja kibernetika. 1969. № 4.
  9. Kalata Paul. R. The Tracking Index: A Generalized Parameter for α-β and α-β-γ Target Trackers // IEEE Transactions on Aerospace and Electronic Systems. 1984. Vol. AES-20. № 2. P. 174−182.
  10. Farber V.E. Analiz kharakteristik algoritmov opredelenija parametrov dvizhenija kosmicheskikh apparatov po informacii radiolokacionnykh sredstv, ispolzujushhikh zondirujushhie signaly s linejjnojj chastotnojj moduljaciejj // Kosmicheskie issledovanija. 1995. T. 33. № 1. S. 31−35.
  11. Gorokhov A.V., Farber V.E. Reshenie zadachi ob optimalnom bystrodejjstvii nabljudenija za snizhajushhimisja v atmosfere kosmicheskimi obektami // Izvestija RAN. Teorija i sistemy upravlenija. 1992. № 2. S. 197−205.
  12. Solovev G.K., Tolkachev A.A., Farber V.E. Ob ispolzovanii LCHM-signala dlja otstrojjki ehkho-signala plazmennogo sleda ot ehkho-signala soprovozhdaemogo obekta // Radiotekhnika. 2006. № 4. S. 51−52.
  13. Trofimenko M.A., Farber V.E. Ocenka vlijanija skorostnogo smeshhenija v radiolokacionnykh stancijakh s LCHM-signalom na granicy ustojjchivosti soprovozhdenija vkhodjashhikh v atmosferu kosmicheskikh obektov // Trudy MFTI. 2015. T. 7. № 2. S. 156−166.
  14. Trofimenko M.A., Farber V.E. Ocenka vlijanija nalichija skorostnojj oshibki pri izmerenijakh dalnosti v RLS s LCHM-signalom na granicy ustojjchivosti algoritmov ocenki dalnosti i radialnojj skorosti // Radiotekhnika. 2015. № 10. S. 7−16.
  15. Wong W., Blair W.D. Steady-state tracking with LFM waveforms // IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. № 2. P. 701−709.
  16. Jain V., Blair W.D. Filter Design for Steady-State Tracking of Maneuvering Targets with LFM Waveforms // IEEE Transactions on Aerospace and Electronic Systems. 2009. V. 45. № 2. P. 765−773.
  17. Trofimenko M.A., Farber V.E. Influence of range-Doppler coupling on the tracking stability of reentering space objects // 2015 International Conference on Engineering and Telecommunication. IEEE. 2015. P. 40−44.
  18. Farber V.E. Analiz kharakteristik algoritmov ocenki ehffektivnosti aehrodinamicheskogo tormozhenija vkhodjashhikh v atmosferu kosmicheskikh obektov // Radiotekhnika. 2007. № 10. S. 81−87.
  19. Kuzin L.T. Raschet i proektirovanie diskretnykh sistem upravlenija. M.: Mashinostroenie. 1962.