I.V. Kartashevsky – Ph. D. (Eng.), Associate Professor of Department of Software and Management in Technical
Systems, Volga State University of Telecommunications and Informatics (Samara)
E-mail: ivk@psuti.ru
A.V. Saprykin – Engineer, JSC «Concern «Avtomatika» (Moscow) E-mail: mail@ao-avtomatika.ru
This article is about the calculation of the average waiting time for a request in a queueing system G/G/1, where we use Dagum distribution to describe time inter-arrival time, and this sequence of time intervals has pronounced correlation properties. The methods of the classical queueing theory do not allow us to analyze the system G/G/1 with correlated inter-arrival and correlated service time. To analyze the average waiting time of the request in the queue we provide an approximation of the Dahuma distribution by a second-order hyper-exponential distribution, which no longer possesses the indicated correlation properties. The spectral method of solving the Lindley integral equation is used to find the average waiting time of the request in the queue for known parameters of an equivalent system with a hyper-exponentially distributed inter-arrival and service time. Also, we made a comparison between the waiting time of the request in the queue when processing correlated and non-correlated traffic.
- Sheluxin O.I., Tenyakshev A.M., Osin A.V. Fraktal'ny'e proczessy' v telekommunikacziyax / Pod red. O.I. Sheluxina. M.: Radiotexnika. 2003. 480 s.
- Nazarov A.N., Sy'chev K.I. Modeli i metody' rascheta pokazatelej kachestva funkczionirovaniya uzlovogo oborudovaniya i strukturnosetevy'x parametrov setej svyazi sleduyushhego pokoleniya. Krasnoyarsk: Polikom. 2011. 491 s.
- Buranova M.A., Samojlov M.S. Issledovanie statisticheskix svojstv mul'timedijnogo trafika // Trudy' 16-j Mezhdunar. konf. «Czifrovaya obrabotka signalov i ee primenenie». M.: 2014. S. 234−236.
- Dubniczkij V.Yu., Petrenko O.E. Oczenivanie parametrov raspredelenij Bredforda, Barra i Daguma metodom maksimal'nogo pravdopodobiya // Sistemi obrobki informaczii-2011. № 4(94). S. 126−129.
- Klejnrok L. Teoriya massovogo obsluzhivaniya: Per. s angl. pod red. V.I. Nejmana. M.: Mashinostroenie. 1979. 432 s.
- Balcioglu B., Jagerman D.L., Altiok T. Merging and splitting autocorrelated arrival processes and impact on queueing performance / Technical report TR-2005-020, Department of Industrial & Systems Engineering, Rutgers University, Piscataway, NJ 08854.
- Jagerman D.L., Balcioglu B., Altiok T., Melamed B. Mean Waiting Time Approximations in the G/G/1 Queue // Queueing Systems. 2004. 46. P. 481−506.
- Balcioglu B., Jagerman D.L., Altiok T. Approximate mean waiting time in a GI/D/1 queue with autocorrelated times to failures // IIE Trasactions. 2007. 39. № 10. P. 985−996.
- Kartashevskij I.V., Tarasov V.N. Sposoby' approksimaczii vxodny'x raspredelenij dlya sistemy' G/G/1 i analiz poluchenny'x rezul'tatov // Sistemy' upravleniya i informaczionny'e texnologii. 2015. № 3.1(61). S. 182−185.
- Koks D., L'yuis P. Statisticheskij analiz posledovatel'nostej soby'tij: Per. s angl. I.A. Maxovoj i V.V. Ry'kova / Pod red. N.P. Buslenko. M.: Mir. 1969. 312 s.
- Yanke E., E'mde F., Lyosh F. Speczial'ny'e funkczii (formuly', grafiki, tabliczy'): Per. s nemeczkogo / Pod red. L.I. Sedova. M.: Nauka.1968. 344 s.
- Kartashevskij I.V. Model' trafika dlya programmno-konfiguriruemy'x setej // Radiotexnika. № 6. 2016. S. 124−129.