350 rub
Journal Radioengineering №7 for 2016 г.
Article in number:
Analysis of the structures of photonics and nanoplasmonics. Part 1: method of integral equations
Authors:
M.V. Davidovich - Dr. Sc. (Phys.-Math.), Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky. E-mail: davidovichmv@info.sgu.ru
Abstract:
In the first part of the article, the method of integral and integral-differential equations for problems of diffraction and problems on eigenvalues for dielectric (magnetodielectric) structures is considered. In the General case, the total field is presented as the field ex-citation and the field of diffraction. The integral and integral-differential equations describing the oscillations of localized plasmons and dielectric resonators, waves in plasmonic and photonic crystals, as well as methods for the conversion of these equations and algorithms for their solution are given. Equations are written for the region, where the complex dielectric permittivity different from the units and may contain surface integrals over its boundary. Also, the volume integral equation without surface integrals is presented. The methods of decreasing the order of singularity of the kernels of the equations based on vector integral theorems and transfer differential operators from the point of observation on source point is introduces. The field of diffraction is explicit expressed through the solution of the integral (integral-differential) equation. The types of equations written with respect to the electric fields, magnetic fields and vector potentials are given. The methods of conversion of some equations to others are introduces. The appropriate algorithms for problems of diffraction and tasks on eigenvalues based on iteration procedures for equations and functionals based on them have been considered.
Pages: 25-31
References

 

  1. Müller C. Foundation of the mathematical theory of electromagnetic waves. Berlin: Springer-Verlag. 1969.
  2. KHizhnjak N.A. Funkcii Grina uravnenijj Maksvella dlja neodnorodnykh sred // ZHTF. 1958. T. 28. № 7. S. 1892−1910.
  3. KHizhnjak N.A. Integralnye uravnenija makroskopicheskojj ehlektrodinamiki. Kiev: Naukova dumka. 1986. 280 s.
  4. Njuton R. Teorija rassejanija voln i chastic. M.: Mir.1969. 607 s.
  5. KHjonl KH., Maueh A., Vestpfal K. Teorija difrakcii. M.: Mir. 1964. 428 s.
  6. Vychislitelnye metody v ehlektrodinamike / Pod red. R. Mitry. M.: Mir. 1977. 486 s.
  7. Vasilev E.N. Vozbuzhdenie tel vrashhenija. M.: Radio i svjaz. 1987. 272 s.
  8. Dmitriev V.I., Zakharov E.V. Integralnye uravnenija v kraevykh zadachakh ehlektrodinamiki: Ucheb. posobie. M.: Izd‑vo Moskovskogo un-ta. 1987. 168 s.
  9. Ilinskijj A.S., Kravcov V.V., Sveshnikov A.G. Matematicheskie modeli ehlektrodinamiki. M.: Vysshaja shkolja. 1991. 224 s.
  10. Vaganov R.B. Kacenelenbaum B.Z. Osnovy teorii difrakcii. M.: Nauka. 1982. 272 s.
  11. Samokhin A.B. Integralnye uravnenija i iteracionnye metody v ehlektromagnitnom rassejanii. M.: Radio i svjaz. 1998. 160 s.
  12. Davidovich M.V. Fotonnye kristally: funkcii Grina, integrodifferencialnye uravnenija, rezultaty modelirovanija // Izvestija VUZov. Radiofizika. 2006. T. 49. № 2. S. 150−163.
  13. Davidovich M.V. Regularization of kernels for volume integral equations // Modeling in applied electromagnetics and electronics. Saratov University Press. 2006. № 7. P. 30−38.
  14. Davidovich M.V., Nefedov I.S. Space-time dispersion and waveguide properties of 2D-periodic metallic rod photonic crystals // Proc. of SPIE. 2014. V. 9031. P. 903115-1−6.
  15. Davidovich M.V., Nefedov I.S. Prostranstvenno-vremennaja dispersija i volnovedushhie svojjstva 2D-periodicheskikh sterzhnevykh metallicheskikh fotonnykh kristallov // ZHEHTF. 2014. T. 145. № 5. S. 771−786.
  16. Goldberg L.B., Penzjakov V.V. Raschet aksialno-simmetrichnykh N-kolebanijj v diehlektricheskikh rezonatorakh metodom integralnogo uravnenija // Radiotekhnika i ehlektronika. 1982. T. 27. № 9. S. 1735.
  17. Ke S.Y., Cheng Y.T. Integration Equation Analysis on Resonant Frequencies and Quality Factors of Rectangular Dielectric Resonators // IEEE Trans. 2001. V. MTT-49. № 3. P. 571−574.
  18. Liu Y., Safavi-Naeini S., Chaudhuri S.K., Sabry R. Efficient simulation of rectangular dielectric resonators using volume MPIE-MoM formulation with combined entire-domain and subdomain basis functions // IEEE Trans. 2004. V. AP-52. № 1. P. 327−331.
  19. Davidovich M.V. Diehlektricheskie rezonatory: metod integralnykh i integrodifferencialnykh uravnenijj // Izvestija Saratovskogo universiteta. Novaja serija. Ser. Fizika. 2008. T. 8. № 1. S. 3−14.
  20. Davidovich M.V. Vector electric and magnetic potentials in electrodynamics of continuous media // Modeling in applied electromagnetics and electronics. Saratov University Press. 2009. № 9. P. 37−55.
  21. Davidovich M.V., Stefjuk JU.V. Iteracionnye metody i algoritmy dlja integralnykh uravnenijj diehlektricheskikh rezonatorov // Izvestija VUZov. Radiofizika. 2010. T. 53. № 4. S. 296−309.
  22. Davidovich M.V. Vektornye ehlektricheskie i magnitnye potencialy v ehlektrodinamike sploshnykh sred // Radiotekhnika. 2014. № 10. S. 57−62.
  23. Davidovich M.V. Iteracionnye metody reshenija zadach ehlektrodinamiki. Saratov: Izd-vo Saratovskogo un-ta. 2014. 240 s.
  24. Gastine M., Courtois L., Dormann J.L. Electromagnetic Resonances of Free Dielectric Spheres // IEEE Transactions on Microwave Theory and Techniques. 1967. V. 15. № 12. P. 694−700.
  25. Klimov V.V. Nanoplazmonika // UFN. 2008. T. 178. № 8. S. 875−880.
  26. Klimov V.V. Nanoplazmonika. M.: Fizmatlit. 2009. 408 s.
  27. Novotnyjj L., KHerkht B. Osnovy nanooptiki. M.: Fizmatlit. 2009. 484 s.
  28. Markov G.T., CHaplin A.F. Vozbuzhdenie ehlektromagnitnykh voln. M. - L.: EHnergija. 1967. 376 s.
  29. Brebbija K., Telles ZH., Vroubel L. Metody granichnykh ehlementov. M.: Mir. 1987. 524 s.
  30. Korn G., Korn T. Spravochnik po matematike. M.: Nauka. 1973. 832 s.