350 rub
Journal Radioengineering №7 for 2016 г.
Article in number:
Measuring the parameters of the «nanometer metal film - dielectric» structure using waveguide-dielectric resonance
Authors:
D.A. Usanov - Dr. Sc. (Phys.-Math.), Professor, Head of Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky, Academic of RANS, Honored Scientist of RF. E-mail: UsanovDA@info.sgu.ru A.V. Skripal - Dr. Sc. (Phys.-Math.), Professor, Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky. E-mail: Skripala_v@info.sgu.ru D.V. Ponomarev - Ph. D. (Phys.-Math.), Associate Professor, Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky. E-mail: Ponomarev87@mail.ru E.V. Latysheva - Post-graduate Student, Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky. E-mail: Ekatushka@list.ru
Abstract:
The results of theoretical and experimental substantiation of the opportunity to use waveguide-dielectric resonance for measuring thickness of nanometer metal layers on dielectric plates have been presented. Computer modeling results has demonstrated the waveguide-dielectric resonance appearance caused by arranging the «nanometer metal film - dielectric» structure perpendicularly to wide walls and at the angle to narrow walls of the waveguide. Two-layer structure consisting of aluminum ceramic plate and nanometer metal layer was placed perpendicular to wide walls and at an angle to narrow walls of the waveguide and symmetrically in its longitudinal axis. Results of calculating the electromagnetic field strength distribution at the frequency, corresponding to a transmission peak of the electromagnetic wave, interacting with aluminum ceramic plate have been shown. The results of calculation the electromagnetic wave transmission spectra for metal-dielectric structure over the ranges of the thickness t = 1-80 nm and conductivity σ = 8-103-1.25-106 Ohm−1m−1 have been shown. The high sensitivity of transmission spectra to the nanometer metal layer thickness change, reaching value of 36.8 dB/nm, have been theoretically substantiated. Good quantitative agreement of experimental and calculated transmission spectra over the ranges of the thickness t = 13.5-40 nm and conductivity σ = 1.38-105-2.638-105 Ohm−1m−1 have been demonstrated.
Pages: 10-16
References

 

  1. Gershenzon E.M., Litvak - Gorskaja L.B., Plokhova L.A., 3arubina T.S. Metody opredelenija parametrov poluprovodnikov i poluprovodnikovykh plenok na SVCH // V kn. «Poluprovodnikovye pribory i ikh primenenie» / Pod red. E.A. Fedotova. M.: 1970. № 23. S. 3−48.
  2. Usanov D.A. SVCH-metody izmerenija parametrov poluprovodnikov. Saratov: Izd-vo Saratovskogo un-ta. 1985. 55 s.
  3. Arapov JU.G., Davydov A.B. Volnovodnye metody izmerenija ehlektrofizicheskikh parametrov poluprovodnikov na SVCH // Defektoskopija. 1978. № 11. S. 63−87.
  4. Asfar M.N., Birch J.R., Clarke R.N. The Measurement of the Properties of Materials // Proc. IEEE. 1986. V. 74. № 1. P. 183−199.
  5. Usanov D.A., Gorbatov S.S. EHffekty blizhnego polja v ehlektrodinamicheskikh sistemakh s neodnorodnostjami i ikh ispolzovanie v tekhnike SVCH. Saratov: Izd-vo Saratovskogo un-ta. 2011. 392 s.
  6. Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S. Izmerenija tolshhiny nanometrovykh sloev metalla i ehlektroprovodnosti poluprovodnika v strukturakh metall-poluprovodnik po spektram otrazhenija i prokhozhdenija ehlektromagnitnogo izluchenija // ZHTF. 2006. T. 76. № 5. S. 112−117.
  7. Dmitry Usanov, Alexander Skripal, Anton Abramov, Anton Bogolubov, Vladimir Skvortsov, Merdan Merdanov. Measurement of the Metal Nanometer Layer Parameters on Dielectric Substrates using Photonic Crystals based on the Waveguide Structures with Controlled Irregularity in the Microwave Band // Proc. of 37rd European Microwave Conference. Munich, Germany. 8−12 October 2007. P. 198−201.
  8. Nikitov S.A., Guljaev JU.V., Usanov D.A., Skripal A.V., Ponomarev D.V. Opredelenie provodimosti i tolshhiny poluprovodnikovykh plastin i nanometrovykh sloev s ispolzovaniem odnomernykh SVCH fotonnykh kristallov // Doklady Akademii Nauk. JAnvar 2013. T. 448. № 1. S. 35−37.
  9. Usanov D.A., Nikitov S.A., Skripal A.V., Ponomarev D.V., Latysheva E.V. Mnogoparametrovye izmerenija ehpitaksialnykh poluprovodnikovykh struktur s ispolzovaniem odnomernykh sverkhvysokochastotnykh fotonnykh kristallov // Radiotekhnika i ehlektronika. 2016. T. 61. № 1. S. 45−53.
  10. Usanov D.A., Merdanov M.K., Skripal A.V., Ponomarev D.V. SVCH fotonnye kristally. Novye sfery primenenija// Izvestija Saratovskogo un-ta. Novaja serija. Ser. 1: Fizika. 2015. T. 15. № 1. S. 57−73.
  11. Yablonovitch E., Gimitter T.J., Meade R.D., et al. Donor and acceptor modes in photonic band structure // Phys. Rev. Lett. Dec. 1991. V. 67. № 24. P. 3380.
  12. Belyaev B.A., Voloshin A.S., Shabanov V.F., Study of Q-factor of impurity mode resonance in microstrip model of 1D-photonic crystal // Doklady Physics (Doklady Akademii Nauk). 2005. V. 403. № 3. P. 319.
  13. SHestopalov V.P., Kirilenko A.A., Rud L.A. Rezonansnoe rassejanie voln. T. 2: Volnovodnye neodnorodnosti. Kiev: Naukova Dumka. 1986. 216 s.
  14. Zanin V.I., Usanov D.A., Feklistov V.B. Opredelenie ehlektrofizicheskikh parametrov poluprovodnika volnovodnym rezonansnym metodom // Mezhvuzovskijj sb. nauchnykh statejj «EHlektrodinamika sloisto-neodnorodnykh struktur SVCH». Samara: Izd-vo Samarskogo un-ta. 1995. S. 88−99.