350 rub
Journal Radioengineering №7 for 2016 г.
Article in number:
Continuous time Kalman filter in problems of optimal receiving signals
Authors:
V.M. Sovetov - Dr. Sc. (Eng.), Senior Research Scientist, Main Research Scientist, 16 CRTI DoD. E-mail: sovetovvm@mail.ru
Abstract:
The Kalman filter (KF) as well as a matched filter or a correlator is used for solving optimal signal reception. The main problem when using KF in optimal reception is the solution of the Riccati equation to calculate the covariance matrix of the estimation error and, ac-cordingly, the weight matrix. It is known that the discrete KF for the signal of known form can be represented as the sum of the state vectors with the transformation of the state transition matrix followed by weighing the result of accumulation using a posteriori error covariance matrix estimation. In this case, it suffices to compute the weight matrix for the decision, which greatly simplifies the implementation of algorithms of reception. On the basis of this representation of the digital filter by finding the limit of the sum obtained continuous representation of the filter as an integrator. Represented KF as the integral state vectors, meets the dual models of the transmitted signal. Using this representation of KF, it is show that matched filtering and correlation processing are part of KF algorithm. The expression for the weight matrix obtained by solving the Riccati equation also includes a matched filtering and correlation processing. Thereby the signal component at the output of the receiver is normalized to unity, resulting in accurate estimation signal. As an example, was demonstrated the reception harmonic signal with opposite phases. This reception was carried out using a decision rule for the correlation reception, matched filtering and KF as a whole.
Pages: 111-118
References

 

  1. Sejjdzh EH., Mels Dzh. Teorija ocenivanija i ee primenenie v svjazi i upravlenii / Per. s angl. M.: Svjaz. 1976. 496 s., il.
  2. Snajjder D. Metod uravnenijj sostojanija dlja nepreryvnojj ocenki v primenenii k teorii svjazi / Per. s angl. M.: EHnergija. 1973.
  3. Sovetov V.M. Predstavlenie modeli sistemy shirokopolosnojj svjazi v terminakh prostranstva sostojanijj // Radiotekhnika i ehlektronika. 1991. T. 36. № 4. S. 708−714.
  4. Sovetov V.M. Optimalnyjj priemnik slozhnykh signalov s ispolzovaniem filtra Kalmana // Radiotekhnika. 1991. № 10. S. 9−13.
  5. Sovetov V.M., Kojokin V.A. Optimalnyjj algoritm priema pri ispolzovanii modeli signala v prostranstve sostojanijj // EHlektromagnitnye volny i ehlektronnye sistemy. 2009. T. 14. № 11. S. 22−28.
  6. Sovetov V.M., Kojokin V.A. Optimalnyjj priem fazomanipulirovannykh signalov na osnove dinamicheskojj modeli // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2010. T. 6. № 1.
  7. Sovetov V.M. Optimalnyjj priem chastotno-manipulirovannykh signalov na osnove dinamicheskojj modeli nesushhejj chastoty // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2010. T. 6. № 3.
  8. Sovetov V.M., Medvedev P.A. Optimalnyjj algoritm priema M signalov pri ispolzovanii modeli nesushhejj v prostranstve sostojanijj // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2010. T. 6. № 4.
  9. Sovetov V.M., Ryzhenkova D.A. Optimalnyjj algoritm priema MCHMn signalov pri ispolzovanii modeli nesushhejj v prostranstve sostojanijj // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2011. № 8 (27).
  10. Prostranstvo sostojanijj v teorii upravlenija (dlja inzhenerov). Derusso P. i dr. / Per. s angl. M.: Nauka. 1970. 620 s.
  11. Peter J. Schreier, Louis L. Scharf. Statistical Signal Processing of Complex-Valued Data. The Theory of Improper and Noncircular Signals 2010. Cambridge University Press. 2010.
  12. Brammer K., Ziffling G. Filtr Kalmana-Bjusi / Per. s nem. M.: Nauka. Fizmatlit. 1982. 200 s.
  13. Grewal M.S., Andrews P.A. Kalman filtering theory and practice using MATLAB. Second Edition. John Wiley & Sons. Inc. 2001. 401 p.
  14. Simon D. Optimal State Estimation. John Wiley & Sons. Inc. 2006. 401 p.