350 rub
Journal Radioengineering №10 for 2016 г.
Article in number:
Prediction of mechanisms for electronic structure control of corrugated graphene nanoribbons
Authors:
O.E. Glukhova - Dr. Sc. (Phys.-Math.), Professor, Head of Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky E-mail: GlukhovaOE@info.sgu.ru V.V. Mitrofanov - Post-graduate Student, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky E-mail: ip.boyar@gmail.com I.N. Saliy - Dr. Sc. (Phys.-Math.), Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky E-mail: sin@sgu.ru M.M. Slepchenkov - Ph. D. (Phys.-Math.), Associate Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky E-mail: slepchenkovm@mail.ru V.V. Shunaev - Post-graduate Student, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky E-mail: vshunaev@list.ru
Abstract:
The article is devoted to the search of effective ways for electronic structure control of corrugated armchair graphene nanoribbons. As the research tools we used quantum method SCC DFTB2. The objects of study were corrugated armchair nanoribbons with the extended unit cell, which had the length of 6.2 nm and the width of 1.2 nm. At the initial stage of the study we selected parameters of corrugated graphene - the corrugation depth and width of troughin which induce the greatest changes in electronic structure of the object. Next, we studied the effect of atomic grid defects in the form of the Stone-Wales defect and oxygen chemisorption on the electronic structure. Analysis of the electronic structure was carried out on the basis of the calculation results of the density of electron states distribution. It was found that control of the electronic conductivity type for corrugated nanoribbons may be carried out by means of the introducing of oxygen atoms in graphene atomic grid as a result of chemisorption.
Pages: 230-234
References

 

  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films // Science. 2004. V. 306. P. 666−669.
  2. Geim A.K., Novoselov K.S. The rise of graphene // Nat. Mater. 2007. V. 6. P. 183−191.
  3. Geim K. Graphene: Status and Prospects // Science. 2009. V. 324. P. 1530−1534.
  4. Lee W.X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene // Science. 2008. V. 321. P. 385−388.
  5. Ponomarenko L.A., Schedin F., Katsnelson M.I., Yang R., Hill E.W., Novoselov K.S., Geim A.K. Chaotic Dirac billiard in graphene quantum dots // Science. 2008. V. 320. P. 356−358.
  6. Wu J.S., Pisula W., Mullen K. Graphene Molecules as Potential Material for Electronics // Chem. Rev. 2007. V. 107. P. 718−747.
  7. Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I., Novoselov K.S. Detection of individual gas molecules adsorbed on graphene // Nat. Mater. 2007. V. 6. P. 652−655.
  8. Zhang H., Lv X., Li Y., Wang Y., Li J. P25-graphene composite as a high performance photocatalyst // ACS Nano. 2010. V. 4. P. 380−386.
  9. Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., Ahn J.H., Kim P., Choi J.Y., Hong B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes // Nature. 2009. V. 457. P. 706−710.
  10. Wang X., Zhi L.J., M¨ullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells // Nano Lett. 2008. V. 8. P. 323−327.
  11. Aitken Z.H., Huang R. Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene // Journal of Applied Physics. 2010. V. 107. № 123531. P. 1−10.
  12. Bao W., Miao F., Chen Z., Zhang Z., Jang W., Dames C.C., Lau N. Controlled ripple texturing of suspended graphene // Nature Nanotechnology. 2009. V. 4. P. 562−566.
  13. Aradi B., Horahine B., Frauenheim Th., DFTB+, a Spanse Matrix-Based Implementation of the DFTB Method // J. Phys. Chem. A. 2007. V. 111. P. 5578−5684.
  14. URL = http://nanokvazar.ru/ (14.03.2016).