350 rub
Journal Radioengineering №10 for 2016 г.
Article in number:
Methodology for setting up of technological process for microwave modules manufacturing based on multilayer LTCC structures and its testing on pilot batch
Authors:
P.A. Tushnov - Main Technologist, PJSC «Radiofizika» (Moscow) A.V. Nevokshenov - Head of Department, PJSC «Radiofizika» (Moscow) A.V. Kazakov - Technologist, PJSC «Radiofizika» (Moscow) A.V. Golubev - Engineer, PJSC «Radiofizika» (Moscow)
Abstract:
The article examines ways to improve the efficiency of the APAA receiver-transmitter modules (RTM) by implementing design-layout and design-engineering solutions using technology of Low Temperature Cofired Ceramic (LTCC). Authors highlight carrying out of technological research in the process of integrated functional unit (IFU) production based on multilayer LTCC structure for the X band RTM output amplifier of power (OAP). We proposed a method for development of manufacturing process of multilayer LTCC structure, allowing defining the required set of parameters with minimal time consumption and costs for manufacturing of tools. Algorithms of step-by-step technology creation aimed at minimization of technical and time resources are presented. The article gives estimation of potentially achievable range of dimensional tolerances and flat surface accuracy tolerances of the multilayer LTCC structure that can be used in the development of microwave elements topology and specification of tolerances for board size. Design solutions are tested for performance of electrical, mechanical and thermal interfaces, operational requirements are met. It is shown that the tests of IFU output amplifier of power created using developed technology confirm the possibility of using multilayer boards for serial production of microwave X band devices. The results of technological research and tests obtained during experimental production and testing are analyzed and presented in tables and charts. We provide photos of tools for firing, IFU board, contacting device and X band RTM developed by PJSC «Radiofizika», as well as brief description of IGU, obtained during tests. It was observed that technological research contributes to the achievement of technological efficiency in the production of pilot samples, and allow practicing of technological processes for subsequent serial production of APAA RTM.
Pages: 52-63
References

 

  1. Tushnov P.A., Berdyev V.S., Levitan B.A. Aspekty razvitija tekhnologijj priemoperedajushhikh modulejj aktivnykh fazirovannykh reshetok // Radiotekhnika. 2015. № 4. S. 28−35.
  2. Tushnov P.A., Berdyev V.S. Tekhnologii obespechenija ehffektivnosti priemoperedajushhikh modulejj AFAR, rabotajushhikh v impulsnom rezhime // Radiotekhnika. 2016. № 4. S. 29−44.
  3. Tushnov P.A., Berdyev V.S. Tekhnologija upravlenija vykhodnojj moshhnostju PPM AFAR // Radiotekhnika. 2015. № 10. S. 62−74.
  4. Pat. RF № 106070. Mnogoslojjnaja pechatnaja plata, uzel germetichnogo vvoda, korpus radioehlektronnogo ustrojjstva, nabor dlja ego izgotovlenija i radioehlektronnoe ustrojjstvo, soderzhashhee ee / Ganin S.A., Dominjuk JA.V., Levitan B.A., Molchanov E.G., Moroz V.B., Muradjan SH.A., Ochkov D.S., Plaksin G.A., Radchenko V.P., Sudarenko A.A., Topchiev S.A., Tushnov P.A., Formalnov I.S., SHishlov A.V., JArchak I.A.
  5. Pat. RF № 128791. Priemoperedajushhijj modul aktivnojj fazirovannojj antennojj reshetki / Berdyev V.S., Dominjuk JA.V., Levitan B.A., Molchanov E.G., Ochkov D.S., Radchenko V.P., Sudarenko A.A., Topchiev S.A., Tushnov P.A., Formalnov I.S., JArchak I.A., SHarov A.I., Tereshhenko JU.G.
  6. Pat. RF № 2576666. Sposob montazha moshhnogo poluprovodnikovogo ehlementa / Levitan B.A., Kuzin A.A., Topchiev S.A., Radchenko V.P., Dominjuk JA.V., Tushnov P.A., Berdyev V.S., Koljushev A.V., Mitrofanov M.M., Kostin D.JU., Astafev A.A.
  7. Pat. RF № 2562440. Priemoperedajushhijj modul. Dominjuk JA.V., Levitan B.A., Topchiev S.A., Tushnov P.A.
  8. Pat. RF № 154186. Radioehlektronnoe ustrojjstvo / Tushnov P.A.
  9. Pat. RF № 2566328. SVCH-modul / Tushnov P.A.
  10. Pat. RF № 2566601. Priemo-peredajushhijj SVCH-modul / Berdyev V.S., Dominjuk JA.V., Levitan B.A., Mitrofanov M.M., Radchenko V.P., Tokmakov D.I., Topchiev S.A., Tushnov P.A.
  11. Pat. RF № 157898. Priemoperedajushhijj SVCH-modul AFAR / Tushnov P.A., Dominjuk JA.V., Berdyev V.S., Mitrofanov M.M.
  12. Pat. RF № 2576497. Radioehlektronnyjj SVCH-modul / Tushnov P.A.
  13. Pat. RF № 2584006. Usilitelnyjj blok / Tushnov P.A.
  14. Pat. RF № 2556863. Korpus radioehlektronnogo ustrojjstva (varianty) / Aljokhin N.N., Ampilov O.V., Berdyev V.S., Vencenoscev D.L., Dominjuk JA.V., Karimov JA.SH., Levitan B.A., Radchenko V.P., Topchiev S.A., Tushnov P.A.
  15. Pat. RF № 2564152. Sposob okhlazhdenija aktivnojj fazirovannojj antennojj reshetki / Vencenoscev D.L., Levitan B.A., Radchenko V.P., Smolin M.G., Tokmakov D.I., Topchiev S.A., Tushnov P.A.
  16. Pat. RF № 164624. Radioehlektronnoe ustrojjstvo / Tushnov P.A. Mikhajjlova M.L.
  17. Levitan B.A., Radchenko V.P., Topchiev S.A. Mobilnaja specializirovannaja radiolokacionnaja stancija // Radiotekhnika. 2014. № 1. S. 59−64.
  18. Tushnov P.A. Tekhnologicheskaja rekonstrukcija dlja sozdanija novogo pokolenija RLS s AFAR. Tekhnologii radiolokacii. K 55-letiju PAO «Radiofizika». M.: Veche. 2015. S. 494−511.
  19. CHernykh V.N., CHigirinskijj S.A. Napravlenija razvitija izdelijj iz specialnojj keramiki dlja proizvodstva ehlektronnojj tekhniki v Rossii // Informacionnyjj bjulleten «Stepen integracii». Aprel 2012. № 7. S. 4−7.
  20. Imanaka Y. Fujitsu Laboratories, Ltd. Japan, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology // Springer Science+Business Media. Inc. 2005.
  21. Albertsen A. LTCC Technology for Sensor and RF-Applications // Bodo-s Power Systems. 2007. № 12. P. 38−39.
  22. Kondratjuk R.I. Nizkotemperaturnaja sovmestno obzhigaemaja keramika. (LTCC). Preimushhestva. Tekhnologija. Materialy // Informacionnyjj bjulleten «Stepen integracii». 2011. № 5. S. 14−18.
  23. CHigirinskijj S.A. Osobennosti i preimushhestva proizvodstva mnogoslojjnykh struktur na osnove keramiki (LTCC, HTCC, MLCC) // Komponenty i tekhnologii. 2009. № 11. S. 130−131.
  24. Kondratjuk R.I. LTCC-sistema Ferro A6 dlja sborki i germetizacii monolitnykh SVCH-mikroskhem // Informacionnyjj bjulleten «Stepen integracii». Oktjabr 2011. № 6.
  25. KHokhlun A.R., CHigirinskijj S.A., SHtupor JO., CHernykh V.N. Metody oformlenija otverstijj v «syrykh» LTCC i NTSS keramicheskikh kartakh // Vektor vysokikh tekhnologijj. 2014. № 3 (8). S. 30−35.
  26. CHigirinskijj S.A., SHtupar JO. Osobennosti trafaretnojj pechati i sborki v stek na oborudovanii KEKO // EHlektronika: nauka, tekhnologija, biznes. 2010. № 3. S. 42−44.
  27. CHernykh V.N., SHtupar JO., KHokhlun A.R., CHigirinskijj S.A. Voprosy formirovanija mnogoslojjnogo keramicheskogo paketa dlja proizvodstva LTCC i HTCC // Vektor vysokikh tekhnologijj. 2015. № 3 (16). S. 49−54.
  28. Potapov JU.V. Osobennosti tekhnologii proektirovanija i proizvodstva LTCC-modulejj // Tekhnologii v ehlektronnojj promyshlennosti. 2008. № 3. S. 59−63.
  29. Sudarenko D.A., Ljutov A.V. Puti povyshenija kachestva proizvodstva SVCH-komponentov na osnove tekhnologii nizkotemperaturnojj sovmestno obzhigaemojj keramiki // Radiolokacija i svjaz. 2016. № 21. S. 45−47.
  30. CHigirinskijj S.A., Mejjlicev V.I. Metody kontrolja materialov nizkotemperaturnojj keramiki. Tekhnologii kompanii Ferro // Vektor vysokikh tekhnologijj. 2015. № 7 (20). S. 22−28.
  31. CHernykh V.N., CHigirinskijj S.A. Vozmozhnosti LTCC-tekhnologii dlja umenshenija teplovogo soprotivlenija moshhnykh vysokonadezhnykh KIMP // Silovaja ehlektronika. 2012. № 5. S. 12−16.