350 rub
Journal Radioengineering №4 for 2015 г.
Article in number:
Dynamics of self-oscillators with fractional communications
Authors:
V.V. Zaitsev - Ph. D. (Phys.-Math.), Professor, Department of Radiophysics, Samara State University. E-mail: zaitsev@ssu.samara.ru Ar.V. Karlov - Leading Design Engineer, JSC «Concern «Automation». E-mail: arkarlov@oao-avtomatika.ru
Abstract:
The article discusses two schemes of radio electronic self-oscillators of the Thomson type with fractional chains in the feedback loop. Equations of motion of the self-oscillators for the scheme with fractional excitation and for the scheme with fractional feedback, con-taining a left-sided derivative of Liouville are obtained. Solutions of the equation of motion which correspond to the transitional regime and the steady-state self-oscillations are obtained in the quasi-harmonic approximation. Despite the fact that the fractional derivative includes in the equation of motion for the scheme with fractional feedback more compli-cated than in the equation of motion for the scheme with fractional excitation, considered schemes of the self-oscillators have identical characteristics in the quasi-harmonic approximation. It is shown that isochronism, characteristic for a standard oscillator, is retained in fractional oscillator of the Thomson type. It is con-cluded that the fractionality of the excitation circuit degrades the energy characteristics of the self-oscillator. Considered fractional self-oscillators primarily represent model objects of nonlinear dynamics. However, fractional communications may be formed in the environment, as well as a side effect in radio electronics due to the widening variety of electronic components used.
Pages: 38-43
References

 

  1. Potapov A.A.Fraktaly v radiofizike i radiolokacii. M.: Logos. 2002. 664 c.
  2. Tarasov V.E. Modeli teoreticheskojj fiziki s integro-differencirovaniem drobnogo porjadka. M. - Izhevsk: Izhevskijj institut kompjuternykh issledovanijj. 2011. 568 s.
  3. Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo porjadka i nekotorye ikh prilozhenija. Minsk: Nauka i tekhnika. 1987. 688 s.
  4. Uchajjkin V.V. Metod drobnykh proizvodnykh. Uljanovsk: Artishok. 2008. 512 s.
  5. Zaslavsky G.M. Hamiltonian Chaos and Fractional Dynamics. Oxford: Oxford University Press. 2005 / Zaslavskijj G.M.Gamiltonovkhaosifraktalnajadinamika. M. - Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». Izhevskijj institut kompjuternykh issledovanijj. 2010. 472 s.
  6. Nakhushev A.M. Drobnoe ischislenie i ego primenenie. M.: FIZMATLIT. 2003. 272 s.
  7. Schafer I., Kempfle S.Impulse Responses of Fractional Damped Systems // Nonlinear Dynamics. 2004. V. 38. P. 61−68.
  8. Yuan L., Agrawal O.P. A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives // Proc. of ASME Design Engineering Technical Conferences. Atlanta. 1998.
  9. Bogoljubov N.N., Mitropolskijj JU.A. Asimptoticheskie metody v teorii nelinejjnykh kolebanijj. Izd. 4-e. M.: Nauka. 1974. 504 s.
  10. Vasilev V.V., Simak L.A.Drobnoe ischislenie i approksimacionnye metody v modelirovanii dinamicheskikh sistem. Kiev: NAN Ukrainy. 2008. 256 s.
  11. Potapov A.A., Gilmutdinov A.KH., Ushakov P.A.Fraktalnye ehlementy i radiosistemy: Fizicheskie aspekty / Pod red. A.A. Potapova. M.: Radiotekhnika. 2009. 200 s.
  12. Westerlund S. Dead matter has memory! // Physica Scripta. 1991. V. 43. № 2. P. 174−179.
  13. Sibatov R.T.i dr. Drobno-differencialnye uravnenija dlja diehlektricheskojj sredy s chastotnym otklikom Gavriljaka-Negami // Nelinejjnyjj mir. 2011. T. 9. № 5. S. 394−400.
  14. Sibatov R.T. Drobno-differencialnaja teorija anomalnojj kinetiki nositelejj zarjada v neuporjadochennykh poluprovodnikovykh i diehlektricheskikh sistemakh: avtoreferat dis. - dokt. fiz.-mat. nauk. Uljanovsk. 2011.
  15. Bekmachev D.A., Potapov A.A., Ushakov P.A.Proektirovanie fraktalnykh proporcionalno-integralno-differencial­nykh reguljatorov drobnogo porjadka // Uspekhi sovremennojj radioehlektroniki. 2011. № 5. S. 13−20.
  16. Petras I.Fractional-order feedback control of a dc motor // Journal of Electrical Engineering. 2009. V. 60. № 3. P. 117−128.