350 rub
Journal Radioengineering №3 for 2015 г.
Article in number:
The reversion method of Volterrа's functional series for digital correction of nonlinear distortions in analogue Radio engineering devices
Authors:
V.I. Proskurin - Ph. D. (Eng.), RC (Tver) CRI ADF of Russian Defence Ministry
Abstract:
To carry out digital correction of nonlinear distortions of signals in the analogue Radio engineering devices. The reversion method the Fаa di Bruno-s type formula is generalised on a case of the multiple functional differentiation of superposition of nonlinear operators on the real and complex functions spaces. On the base of this formula the method of reversion Volterrа-s functional series is developed. The generalized formula of Faa di Bruno-s and the method of reversal of functional polynomials make the generalized method coefficients allowing to find coefficients of the functional polynomials for superposition (serial connection) several non-linear systems, non-linear feedback systems, etc. The Method of reversal of the functional rows allows to fulfill numeral correction of non-linearity distortions of signals in the analog parts of radio receivers and also to calculate numeral pre-distortions for a signal on an input of power amplifiers of radio transmitters.
Pages: 97-103
References

 

  1. Proskurin V.I. Ocenka trebovanijj k linejjnosti priemnogo trakta aktivno-passivnykh RLS // Radiotekhnika (Radiosistemy:KURS). 2011. № 1 (159:18). S. 80−83.
  2. Bedrosjan EH., Rajjs S.O. Svojjstva vykhodnogo signala sistem, opisyvaemykh rjadami Volterra (nelinejjnykh sistem s pamjatju), pri podache na vkhod garmonicheskikh kolebanijj i gaussova shuma // TIIEHR. 1971. T. 59. № 12. S. 58−82.
  3. Kashkin V.B. Funkcionalnye polinomy v zadachakh statisticheskojj radiotekhniki. M.: Nauka. 1981.
  4. Volterra V. Teorija funkcionalov, integralnykh i integro-differencialnykh uravnenijj. M.: Nauka. 1982.
  5. Viner N. Nelinejjnye zadachi v teorii sluchajjnykh processov. M.: In.Lit., 1961.
  6. Djoch R. Nelinejjnye preobrazovanija sluchajjnykh processov. M: Sov. radio. 1965.
  7. Berezin F.A. Metod vtorichnogo kvantovanija. M.: Nauka. 1986.
  8. Kolmogorov A.N., Fomin S.V. EHlementy teorii funkcijj i funkcionalnogo analiza. M.: FIZMATLIT. 2004.
  9. Daleckijj JU.L., Fomin S.V. Mery i differencialnye uravnenija v beskonechnomernykh prostranstvakh. M.: Nauka. 1983.
  10. Vladimirov V.S. Metody teorii funkcijj mnogikh kompleksnykh peremennykh. M.: Nauka. 1964.
  11. Rytov S.M., Kravcov JU.A., Tatarskijj V.I. Vvedenie v statisticheskuju radiofiziku. CH.2. Sluchajjnye polja. M.: Nauka. 1978.
  12. Fikhtengolc G.M. Kurs differencialnogo i integralnogo ischislenija. M.: Nauka. 2001. T. 2.
  13. Pupkov K.A., Kapalin V.I., JUshhenko A.S. Funkcionalnye rjady v teorii nelinejjnykh sistem. M.: Nauka. 1976.
  14. Barrett J.F. Nonlinear System Analysis by Volterra and Hermite functional expansions. Southampton. GB: University of Southampton. 2012. http://eprints.soton.ac.uk/id/eprint/345465.
  15. Gradshtejjn I.S., Ryzhik I.M. Tablicy integralov, summ, rjadov i proizvedenijj. M.: FML. 1963.
  16. Gursa L. Kurs matematicheskogo analiza. M.,L.: GTTI. 1933. T. 1.
  17. Arbogast L.F.A. Du Calcul des D`erivations. Strasbourg: Levrault. 1800.
  18. Faa di Bruno F. Sullo Sviluppo delle Funzioni // Annali di Scienze Matematiche e Fisiche. 1855. V. 6. P. 479−480. https://hal.archives-ouvertes.fr/hal-00950525.
  19. Constantine G.M., Savits T.H. A multivariate Faa di Bruno formula with applications // Trans. Amer. Math. Sot. 1996. V. 348. № 2. P. 503−520.
  20. Encinas L.H., Masque J.M. A Short Proof of the Generalized Faa di Bruno-s Formula // Applied Mathematics Letters. 2003. V. 16. P. 975−979.
  21. Leipnik R.B., Pearce C.E.M. The multivariate Faaґdi Bruno-s Formula and multivariate Taylor Expansions with explicit Integral Remainder Term // ANZIAM J. 2007. V. 48. P. 327−341.
  22. Wiener N. Response of a Non-Linear Device to Noise // Tech. Rep. 168: MIT Rad. Lab. Report. 1951. December.
  23. Ikehara S. A Method of Wiener in a Non-Linear Circuit // Tech. Rep. 217: MITRLEReport. 1951. December.
  24. Schetzen M. Theory of pth Order Inverses of Nonlinear Systems // IEEE Trans. on Circuits and Systems. 1976. V. 23. № 5. P. 285−281.
  25. Vishik M.I., Fursikov A.V. Matematicheskie zadachi statisticheskojj gidromekhaniki. M.: Nauka. 1980.
  26. Proskurin V.I., SHevchuk V.I. Identifikacija nelinejjnykh ustrojjstv po mnogochastotnomu signalu // Radiotekhnika (Radiosistemy:KURS). 2010. № 11 (157:17). S. 68−71.