350 rub
Journal Radioengineering №10 for 2015 г.
Article in number:
Theoretical analysis of acoustic waves propagating in round cylindrical waveguide
Authors:
A.A. Teplykh - Ph. D. (Phys.-Math.), Senior Research Scientist, Laboratory of Physical Acoustics, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: teplykhaa@mail.ru B.D. Zaitsev - Dr. Sc. (Phys.-Math.), Professor, Head of Laboratory of Physical Acoustics, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: zai-boris@yandex.ru I.E. Kuznetsova - Dr. Sc. (Phys.-Math.), Associate Professor, Leading Research Scientist, Laboratory of Electronic Processes in Semiconductor Devices, Kotel\'nikov IRE of RAS (Moscow). E-mail: kuziren@yandex.ru
Abstract:
The problem of propagation of acoustic waves in an infinitely long piezoelectric cylinder of circular cross-section has been studied. The material of cylinder was considered transversely isotropic (axially symmetric). However, propagating waves may be not axisymmetric, for example, the flexural wave modes. We give mathematical formulation of the problem, description of a numerical solution method, and the results of calculations of the phase velocity and electromechanical coupling coefficient for the waves in the cylinder of piezoelectric ceramics such as PZT 24.
Pages: 93-101
References

 

  1. Kuznetsova I.E., Zaitsev B.D., Joshi S.G., Borodina I.A. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalite // IEEE Transactions on Ultrasonic, Ferroelectr and Frequency Control.2001. V. 48. P. 322−328.
  2. Dieulesaint E., Doyer D. Elastic Waves in Solids I, Free and Guided Propagation / Springer-Verlag Berlin Heidelberg. 2000.
  3. Love A.E.H. Mathematical theory of elasticity. DoverPub. 1944.
  4. Mirsky I. Wave propagation in transversely isotropic circular cylinders. Part I: Theory // Journal of the Acoustical Society of America. 1965. V. 37. P. 1016−1026.
  5. Every A.G., Shatalov M.Y., Yenwong-Fai A.S. Progress in the analysis of non-axisymmetric wave propagation in a homogeneous solid circular cylinder of a piezoelectric transversely isotropic material // Journal of the Acoustical Society of America. 1999. V. 67. P. 1026−1036.
  6. Winkel V., Oliviera J.E.B, Dai J.D., Ken C.K. Acoustic wave propagation in piezoelectric fibers of hexagonal crystal symmetry // IEEE Transactions on Ultrasonic, Ferroelectr and Frequency Control. 1995. V. 42. P. 949−955.
  7. Yenwong-Fai A.S. Wave propagation in a piezoelectric solid cylinder of transversely isotropic material // Master\'s thesis. UniversityofWitwatersrand. Johannesburg, SouthAfrica. 2008.
  8. Korn G., Korn T. Mathematical Handbook for scientists and engineers. McGraw-HillBookCompany.1968.
  9. Topolov V.JU., Panich A.E. EHlektromekhanicheskie svojjstva segnetokeramik na osnove oksidov semejjstva perovksita // EHlektronnyjj nauchnyjj zhurnal «Issledovano v Rossii». 2008. URL:http://zhurnal.ape.relarn.ru/articles/2008/002.pdf.