350 rub
Journal Radioengineering №3 for 2014 г.
Article in number:
The features of adaptive control of mobile objects group
Authors:
А.V. Achkasov - Ph.D. (Eng.), Research Institute of Electronic Engineering. E-mail: achkasov@list.ru
O.Ya. Kravez - Dr.Sci. (Eng.), Professor, Voronezh State Technical University. E-mail: сsit@bk.ru
E.S. Podvalniy - Dr.Sci. (Eng.), Professor, The Russian Presidential Academy of National Economy and Public Administration. E-mail: nauka@rags.vrn.ru
O.Ya. Kravez - Dr.Sci. (Eng.), Professor, Voronezh State Technical University. E-mail: сsit@bk.ru
E.S. Podvalniy - Dr.Sci. (Eng.), Professor, The Russian Presidential Academy of National Economy and Public Administration. E-mail: nauka@rags.vrn.ru
Abstract:
In article the distributed and adaptive algorithms of coordination of group m of autonomous mobile objects are considered.
Mobile objects work in the convex environment with a limited speed and have to carry out certain functions, and also pass control points, and an arrival holding time, the place and stay on a place are stochastic; the purpose is minimization of a system waiting time (expectation plus passing of a control point).
The task in a general view can be formulated as Dynamic Traveling Repairman Problem - a problem of active movement of m-mobile objects (m-DTRP). Known algorithms of management are based on the centralized problem of management and are unstable to changes in environment, for example, to changes in loading therefore they have limited applicability for scenarios with use of the mobile objects working in dynamic conditions.
Potential scopes are various and include supervision and control of mobile objects, of their movement and functioning. In this context, one of article the distributed and adaptive algorithms of coordination of group m of autonomous mobile objects are considered.
Pages: 110-114
References
- Arslan G., Marden J.R., Shamma J.S. Autonomous vehicle-target assignment: A game-theoretical formulation // Journal of Dynamic Systems, Measurement, and Control. 2007. V. 129. № 5. P. 584-596.
- Moore B.J., Passino K.M. Distributed task assignment for mobile agents // IEEE Trans. on Automatic Control, 2007. V. 52. № 4. P. 749-753.
- Smith S.L., Bullo F. Monotonic target assignment for robotic networks // IEEE Trans. on Automatic Control. 2009. V. 54. № 10.
- Bespamyatnikh S., Kirkpatrick D., Snoeyink J. Generalizing ham sandwich cuts to equitable subdivisions // Discrete and Computational Geometry. 2000. V. 24. P. 605-622.
- Sakai T. Balanced convex partitions of measures in R2 // Graphs and Combinatorics. 2002. V. 18. P. 169-192.
- Steele J.M. Probabilistic and worst case analyses of classical problems of combinatorial optimization in Euclidean space // Mathematics of Operations Research. 1990. V. 15. № 40. P. 749.
- Percus G., Martin O.C. Finite size and dimensional dependence of the Euclidean traveling salesman problem // Physical Review Letters. 1996. V. 76. № 8. P. 1188-1191.
- Larson R.C., Odoni A.R. Urban Operations Research. Prentice-Hall. Englewood Cliffs. NJ. 1981.
- Applegate D., Bixby R., Chvatal V., Cook W. On the solution of traveling salesman problems // Documenta Mathematica, Journal der Deutschen Mathematiker-Vereinigung. P. 645-656.
- Christofides N. Bounds for the travelling-salesman problem // Operations Research. 1972. V. 20. P. 1044-1056.
- Arora S. Nearly linear time approximation scheme for Euclidean TSP and other geometric problems // Proc. 38th IEEE Annual Symposium on Foundations of Computer Science. October 1997. P. 554-563.
- Lin S., Kernighan B.W. An effective heuristic algorithm for the traveling-salesman problem // Operations Research, 1973. V. 21. P. 498-516.
- Agarwal P.K., Sharir M. Efficient algorithms for geometric optimization // ACM Computing Surveys. 1998. V. 30. № 4. P. 412-458.
- Megiddo N., Supowit K.J. On the complexity of some common geometric location problems // SIAM Journal on Computing. 1984. V. 13. № 1. P. 182-196.
- Psaraftis H.N. Dynamic vehicle routing problems/ Vehicle Routing: Methods and Studies. Amsterdam, The Netherlands: Elsevier Science Publishers B.V. 1988. P. 223-248.
- Bertsimas D.J., van Ryzin G.J. Stochastic and dynamic vehicle routing in the Euclidean plane with multiple capacitated vehicles // Operations Research. 1993. V. 41. № 1. P. 60-76.
- Xu H. Optimal policies for stochastic and dynamic vehicle routing problems. Dept. of Civil and Environmental Engineering. Massachusetts Institute of Technology. Cambridge, MA. 1995.
- Bertsimas D.J., van Ryzin G.J. Stochastic and dynamic vehicle routing with general interarrival and service time distributions // Advances in Applied Probability. 1993. V. 25. P. 947-978.
- Bertsimas D.J., van Ryzin G.J. A stochastic and dynamic vehicle routing problem in the Euclidean plane // Operations Research. 1991. V. 39. P. 601-615.
- Кулишенко В.С. Особенности учета неоднородности ресурсов в распределенных информационных и программных системах // Информационные технологии моделирования и управления. 2011. № 5(70). С. 595-601.
- Кулишенко В.С., Кравец О.Я. Распределенные и адаптивные алгоритмы управления группой автономных мобильных объектов // Информационные технологии моделирования и управления. 2011. № 6(71). С. 709-717.