350 rub
Journal Radioengineering №2 for 2013 г.
Article in number:
Three-phased and five-phased sequences constructed from difference sets with zinger parameters
Keywords:
p -ary perfect sequences
three-value and five-value phased sequences with one-level autocorrelation
difference sets
Authors:
A.N. Leukhin, N.V. Parsaev, L.G. Kornilova
Abstract:
The design method for p-phased unimodular sequences with one-level periodic autocorrelation function associated with a generalized difference sets with Zinger parameters is offered. Analytical expressions for the construction of p-phase of unimodular sequences with the given level of sidelobes of periodic autocorrelation function for the cases p=3 and p=5 are obtained.
Pages: 4-9
References
- Gantmakher V.E., Bystrov N.E., CHebotarjov D.V. SHumopodobnye signaly. Analiz, sintez, obrabotka. SPb.: Nauka i tekhnika. 2005. 400 c.
- Ipatov V.P. Periodicheskie diskretnye signaly s optimalnymi korreljacionnymi svojjstvami. M.: Radio i svjaz. 1992. 152 s.
- Ipatov V.P. SHirokopolosnye sistemy i kodovoe razdelenie signalov. Principyiprilozhenija:Per. sangl. M.: Tekhnosfera. 2007. 448 s.
- Golomb S.W., Gong G. Signal design for good correlation for wireless communication, cryptography, and radar. New York: Cambridge University Press. 2005. 438 p.
- Fan P., Darnell M. Sequences Design for Communicational Applications. Taunton, Somerset, England: RSP Ltd. 1996. 493 p.
- Paley R.E.A.C. On Orthogonal Matrices // J. Math. Phys. 1933. № 12. P. 311 −- 320.
- Singer J. A theorem in finite projective geometry and some applications to number theory // Trans. Amer. Math. Soc. 1938. V. 43. P. 377 −- 385.
- Hall M. Survey of difference sets // Proc. Am. Math. Soc. 1956. V. 7. P. 975 −- 986.
- Stanton R.G., Sprott D.A. // A family of difference sets. Canadian J. Math. 1958. V. 10. P. 73 −- 77.
- Gordon B., Mills W.H., Welch L.R. Some new difference sets // Canadian J. Math. 1962. V. 14. P. 614 −- 625.
- Maschietti A. Difference sets and hyperovals // Designs, Codes and Cryptography. 1998. V. 14. P. 89 −- 98.
- No J.S., Chung H.B., Yun M.S. Binary pseudorandom sequences of period
with ideal autocorrelation generated by the polynomial // IEEE Trans. Inform. Theory. 1998. V. 44. P. 1278 −- 1282. - Dillon J.F., Dobbertin H. New cyclic difference sets with singer parameters // Finite Fields and Their Applications. 2004. V. 10. P. 342 −- 389.
- Zierler N. Linear recurring sequences // J. Soc. Ind. Apll. Math. 1959. V. 7. P. 31 - 48.
- Antweler M., Bomer L. Complex sequences over
with two-level autocorrelation function and a large linear span // IEEE Trans. On Inform. Theory. 1992. V. 38. № 1. P. 120 - 130. - Gong G. Q-ary cascaded GMW sequences // IEEE Trans on Information Theory. 1996. V. 12. P. 263 - 267.
- Lin H.A. From cyclic Hadamard difference sets to perfectly balanced sequences // Ph.D. Dissertation, University of Southern California. 1998.
- Helleseth T., Kumar P.V., Martinsen H. A new family of ternary sequences ideal autocorrelation function // Des. Codes Cryptogr. 2001. V. 23. № 2. P. 157 - 166.
- Helleseth T., Gong G. New nonbinary sequences with ideal two-level autocorrelation // IEEE Trans. Inform. Theory. 2002. V. 48. № 11. P. 2868 - 2872.
- Dillon J.F. New
-ary perfect sequences and difference sets with Singer parameters // Sequences and their applications. Bergen. 2001. P. 23 - 33. - Arasu K.T., Player K. New families of Singer difference sets in characteristics three using Jacobi sums // Designs Codes and Cryptography. 2003. V. 28. № 1. P. 75 - 91.
- Arasu K.T. Sequences and arrays with desirable correlation properties // Preprint. 2010.
- Ludkovski M., Gong G. New families of ideal 2-level autocorrelation ternary sequences from second order DHT // Proceedings of the second International Workshop on Coding and Cryptography. Paris.2001. P. 345 - 354.
- Amiantov I.N. Izbrannye voprosy statisticheskojj teorii svjazi. M.: Sov. radio. 1971. 416 s.
- Leukhin A.N., Tjukaev A.JU., Bakhtin S.A., Kornilova L.G.
Novye fazokodirovannye posledovatelnosti s khoroshimi korreljacionnymi kharakteristikami // EHlektromagnitnye volny i ehlektronnye sistemy. 2007. № 6. S. 51 - 54. - Leukhin A.N, Parsaev N.V. Sintez shumopodobnykh fazokodirovannykh posledovatelnostejj // Uchjonye zapiski Kazanskogo gosudarstvennogo universiteta. 2008. T. 150. Kn. 2. S. 38 - 50.