350 rub
Journal Radioengineering №8 for 2012 г.
Article in number:
Timing delay evaluation for multiple access wideband communication systems
Keywords:
coherent and noncoherent tracking loop
pseudonoise signal
Fokker-Planck-Kolmogorov equation
Dawson-s integral
Kramers formula
Authors:
V.I. Borisov, V.I. Shestopalov, A.E. Limarev, T.F. Kapaeva
Abstract:
In this paper timing delay is evaluated for multiple access wideband communication systems. Two well-known early-late gate tracking loops are considered, i.e. coherent and noncoherent loops. Average time before tracking loss is a performance measure. The mathematical model is developed in the form of stochastic dynamic system whose potential is an antiderivative of the tracking loop discriminator function. On basis of the boundary problem for Fokker-Planck-Kolmogorov equation an integral expression of the average time before tracking loss is obtained using the dynamic system potential. Furthermore, it is shown that the potential has multiple local minima (stability zones) depending on signal delay time in a multiple access system. The case with two signals is considered in detail.
In the paper analytical as well as numerical methods are used for average time evaluation before tracking loss. Asymptotic estimates are obtained for large signal-to-noise ratios. It is also demonstrated that the derived solution coincides with well-known Kramers formula for bistable systems when general hypergeometric functions have asymptotic representation in a coherent case. Kramers formula is defined by the information about the third potential derivative in a noncoherent case.
Using the numerical results average time before timing loss is plotted versus signal-to-noise ratio and potential profile is plotted as a function of multiple access parameters. The conclusion concerning the methods of tracking loop performance enhancement is drawn from the analysis of the numerical results.
Pages: 4-17
References
- Holmes J.K. Spread spectrum systems for GNSS and wireless communications. Artech House, Boston, London, 2007. 899 p.
- Борисов В.И., Зинчук В.М., Лимарев А.Е., Шестопалов В.И.Помехозащищенность систем радиосвязи с расширением спектра прямой модуляцией псевдослучайной последовательностью. М.: РадиоСофт. 2011. 550 с.
- Welti A.L., Bernhard U.P. Mean time to lose lock of the first and second order modified code tracking loop used in spread spectrum systems // Telecommunication Systems. 1994. V.5. №3. May-Jun.Р.47/347-63/363.
- ВитербиЭ.Д. Принципыкогерентнойсвязи: персангл. Б.А. Смиренина, под ред. Б.Р. Левина. М.: Сов. радио. 1970. 392 с.
- Тихонов В.И., Миронов М.А. Марковские процессы. М.: Сов. радио. 1977. 488 с.
- Гардинер К.В. Стохастические методы в естественных науках:пер. с англ. под ред. Р.Л. Стратоновича. М.: Мир. 1986. 528 с.
- ПонтрягинЛ.С., Андронов А.А.,Витт А.А. Остатистическомрассмотрениидинамическихсистем // Журналэкспериментальной и теоретической физики. 1933. Вып. 3. С. 165-172.
- Казаков В.А. Введение в теорию марковских процессов и некоторые радиотехнические задачи.М.: Сов. радио. 1973. 232 с.
- Цыпкин Я.З. Основы теории автоматических систем. М.: Наука.1977. 580 с.
- Корн Г.,Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука. 1970. 720 с.
- Малахов А.Н., Панкратов А.Л.Точное значение времени релаксации динамической системы с шумом, описываемой произвольным симметричнымпотенциальнымпрофилем // Изв.вузов. Сер. Радиофизика.1995. Т. XXVIII. №3-4. С. 256-261.
- Kramers H.A. Brownian motion in field of force and diffusion model of chemical reaction // Physica. 1940. V.VII. №4. April. Р.284-304.
- Hanggi P.,Talkner P., Borcovec M. Reaction rate theory: fifty years after Kramers // Rev. Mod. Phys. 1990. V.60. №2. April. Р.251-341.
- Федорюк М.В. Асимптотика: Интегралы и ряды. М.: Наука. 1987. 544 с.
- Математика 2007 www.wolfram.com/mathematica/
- Справочник по специальным функциям / под ред.М. Абрамовица, И. Стиган. М.: Наука. 1979. 832 с.
- Никольский С.М. Квадратурные формулы. М.: Наука. 1979. 256 с.