350 rub
Journal Nonlinear World №2 for 2025 г.
Article in number:
A study of stochastic migration and population models “two prey – one migration area – predator – super predator”
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202502-01
UDC: 517.9, 004.8, 519.6
Authors:

I.I. Vasilyeva1

1 Bunin Yelets State University (Yelets, Russia)
1 irinavsl@yandex.ru

Abstract:

Multidimensional migration-population models with predator–prey interactions are an important class of nonlinear dynamic models. The work is devoted to the construction and analysis of five–dimensional dynamic population models related to the type "two prey – one migration area – predator – super predator". The essential aspects of studying such models are the search for parameters that ensure the coexistence of species, the analysis of stationary modes, the determination of the nature of trajectories, as well as the transition to stochastic cases that take into account the influence of additive and multiplicative noise on the dynamics of the model. The aim of the work is construction, qualitatively analyze and stochastization a five-dimensional population model with migration flows taking into account trophic interactions, clarification the influence of additive and multiplicative noise on the system dynamics. Deterministic and stochastic models "two prey – one migration area – predator – super predator" are constructed. The modeling of the processes of species interaction in conditions of trophic interactions and migration flows is carried out. A series of computer experiments are performed, projections of phase portraits are constructed, qualitative effects are identified and a transition to the stochastic case is made, taking into account the addition of additive and multiplicative noise to the right-hand sides of the equations of the system. Trajectory dynamics is studied for stochastic models. The results can be used in solving problems of analyzing complex dynamic systems taking into account random factors.

Pages: 5-14
For citation

Vasilyeva I.I. A study of stochastic migration and population models “two prey – one migration area – predator – super predator”. Nonlinear World. 2025. V. 23. № 2. P. 5–14. DOI: https:// doi.org/10.18127/ j20700970-202501-01 (In Russian)

References
  1. Razzhevajkin V.N. Modeli dinamiki populyacij. M.: VC RAN im. A.A. Dorodnicyna. 2006 (In Russian).
  2. Kurilova E.V., Frisman E.Ya. Modelirovanie dinamiki vzaimodejstvuyushchih populyacij tipa «hishchnik – zhertva» pri postoyannoj migracii osobej s sopredel'nyh territorij. Regional'nye problemy. 2024. T. 27. № 1. S. 62–77. DOI:10.31433/2618-9593-2024-27-1-62-77 (In Russian).
  3. Namba T., Takeuchi Y., Banerjee M. Importance of environmental productivity and diet quality in intraguild predation. Theoretical Population Biology. 2025. 10.1016/j.tpb.2025.03.004.
  4. El Abdllaoui A., Auger P., Kooi B. W., Bravo de la Parra R., Mchich R. Effects of density-dependent migrations on stability of a two-patch predator – prey model. Bellman Prize in Mathematical Biosciences. 2007. V. 210. № 1. P. 335–54. DOI: 10.1016/J.MBS.2007.03.002
  5. Mchich R., Auger P., Poggiale J. Ch. Effect of predator density dependent dispersal of prey on stability of a predator–prey system. Mathematical biosciences. 2007. V. 206. P. 343–56. 10.1016/j.mbs.2005.11.005.
  6. Feng W., Rock B., Hinson J. On a new model of two-patch predator-prey system with migration of both species. The Journal of Applied Analysis and Computation. 2011. V. 1. P. 193–203. 10.11948/2011013.
  7. Demidova A.V. Uravneniya dinamiki populyacij v forme stohasticheskih differencial'nyh uravnenij. Vestnik RUDN. Seriya: Matematika. Informatika. Fizika. 2013. № 1. S. 67–76 (In Russian).
  8. Demidova A.V., Druzhinina O.V., Jacimovic M, Masina O.N., Mijajlovic N., Olenev N., Petrov A.A. The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations. Lecture Notes in Computer Science (LNCS). Springer, 2020. V. 12422. P. 40–54. https://doi.org/10.1007/978-3-030-62867-3_4
  9. Belousov V.V., Druzhinina O.V. Stohasticheskaya modifikaciya modeli «hishchnik–zhertva» na osnove metoda normal'noj approksimacii. Uchenye zapiski UlGU. Seriya: Matematika i informacionnye tekhnologii. 2024. № 2. S. 1–10 (In Russian).
  10. Vasil'eva I.I., Druzhinina O.V., Masina O.N. Postroenie i chislennyj analiz populyacionnyh dinamicheskih modelej s uchetom konkurencii i migracii vidov. Doklady H Mezhdunar. konf. «Matematicheskaya biologiya i bioinformatika» (ICMBB24) (Pushchino, 14–17 oktyabrya 2024 g.). Pod red. V.D. Lahno. Tom 10. Pushchino: IMPB RAN, 2024. Stat'ya № e25. DOI: 10.17537/icmbb24.30 (In Russian).
  11. Karpenko A.P. Sovremennye algoritmy poiskovoj optimizacii. M.: MGTU im. N.E. Baumana. 2017 (In Russian).
  12. Storn R., Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997. V. 11. P. 341–359.
  13. Druzhinina O.V., Masina O.N., Vasil'eva I.I. Differencial'naya evolyuciya v zadachah poiska optimal'nyh parametrov populyacionno-migracionnyh modelej. Sovremennye informacionnye tekhnologii i IT-obrazovanie. 2024. T. 20. № 1. http://sitito.cs.msu.ru/index.php/SITITO/article/view/1021 (In Russian).
  14. Vasilyeva I.I., Demidova A.V., Druzhinina O.V., Masina O.N. Computer research of deterministic and stochastic models “two competitors – two migration areas” taking into account the variability of parameters. Discrete and Continuous Models and Applied Computational Science. 2024. V. 32. № 1. P. 61–73.
Date of receipt: 11.02.2025
Approved after review: 20.02.2025
Accepted for publication: 29.04.2025