350 rub
Journal Nonlinear World №1 for 2025 г.
Article in number:
Conditions of populations coexistence and stability analysis of dynamic models with migration flows
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202501-03
UDC: 517.9, 519.6, 52–17
Authors:

I.I. Vasilyeva1, O.V. Druzhinina2, O.N. Masina3

1, 3 I.A. Bunin Yelets State University (Yelets, Russia)
2 FRС «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia)
1 irinavsl@yandex.ru, 2 ovdruzh@mail.ru, 3olga121@inbox.ru

Abstract:

The research of population dynamics taking into account migration processes is a relevant scientific area. One of the key problems in this area is the analysis of mathematical models describing complex processes of interaction and migration of species in natural and artificial environments. Within the framework of the specified analysis of models, it is essential to obtain the coexistence conditions of species and the stability conditions of equilibrium states. The aim of the work is to describe dynamic models with migration flows, obtain the coexistence conditions of species, and analyze the stability of equilibrium states. For two classes of dynamic population models with migration flows, the issues of analytical and qualitative research are considered. The considered classes of models take into account competitive, trophic interactions and migration flows. Cases of uniform and uneven migration are studied. The coexistence conditions of species are obtained, the stability of positive equilibrium states is analyzed using Lyapunov functions. The results can find application in mathematical modeling problems of nonlinear dynamic systems, the description of which is used to analyze environmental, chemical, physical and sociological processes.

Pages: 20-26
For citation

Vasilyeva I.I., Druzhinina O.V., Masina O.N. Conditions of populations coexistence and stability analysis of dynamic models with migration flows. Nonlinear World. 2025. V. 23. № 1. P. 20–26. DOI: https://doi.org/10.18127/ j20700970-202501-03 (In Russian)

References
  1. Gimel'farb A.A., Ginzburg L.R., Poluektov R.A., Pyh Yu.A., Ratner V. A. Dinamicheskaya teoriya biologicheskih populyacij. M.: Nauka. 1974 (In Russian).
  2. Svirezhev Yu.M., Logofet D.O. Ustojchivost' biologicheskih soobshchestv. M.: Nauka. 1978 (In Russian).
  3. Yang K., Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-patch environments. Mathematical Biosciences. 1994. V. 120. № 1. P. 77–98.
  4. Zhang X.-A., Chen L. The linear and nonlinear diffusion of the competitive Lotka–Volterra model. Nonlinear Analysis. 2007. V. 66. P. 2767–2776.
  5. Chen X., Daus E.S., Jüngel A. Global Existence Analysis of Cross-Diffusion Population Systems for Multiple Species. Archive for Rational Mechanics and Analysis. 2018. V. 227. № 2. P. 715–747.
  6. Chen Sh., Shi J., Shuai Zh., Wu Y. Global dynamics of a Lotka–Volterra competition patch model. Nonlinearity. 2022. V. 35. № 2. P. 817.
  7. Min Z., Xu S., Ma T. Ecological study of the seven-gill eel based on the Lotka–Volterra model and simulations. Highlights in Science, Engineering and Technology. 2024. V. 93. P. 295–303.
  8. Lagui T., Dosso M., Sitionon G. An Analysis of Some Models of Prey-predator Interaction. Wseas Transactions on Biology and Biomedicine. 2024. V. 21. P. 93–107.
  9. Druzhinina O.V., Masina O.N. Issledovanie sushchestvovaniya i ustojchivosti reshenij differencial'noj sistemy ekologicheskoj dinamiki s uchetom konkurencii i diffuzii. Nelinejnyj mir. 2009. T. 7. № 11. S. 881–888 (In Russian).
  10. Demidova A.V., Druzhinina O.V., Masina O.N. Issledovanie ustojchivosti modeli populyacionnoj dinamiki na osnove postroeniya stohasticheskih samosoglasovannyh modelej i principa redukcii. Vestnik RUDN. Seriya: Matematika. Informatika. Fizika. 2015. № 3. C. 18–29 (In Russian) (In Russian).
  11. Sinicyn I.N., Druzhinina O.V., Masina O.N. Analiticheskoe modelirovanie i analiz ustojchivosti nelinejnyh shirokopolosnyh migracionnyh potokov. Nelinejnyj mir. 2018. T. 16. № 3. S. 3–16 (In Russian).
  12. Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning. Mathematics. 2021. V. 9. Iss. 24. P. 3303.
  13. Druzhinina O.V., Vasil'eva I.I., Masina O.N. Postroenie populyacionnyh dinamicheskih modelej tipa «tri konkurenta – tri areala migracii». Nelinejnyj mir. 2023. T. 21. № 4. S. 33–38 (In Russian).
  14. Vasilyeva I.I., Demidova A.V., Druzhinina O.V., Masina O.N. Computer research of deterministic and stochastic models “two competitors – two migration areas” taking into account the variability of parameters. Discrete and Continuous Models and Applied Computational Science. 2024. V. 32. № 1. P. 61–73.
  15. Chetaev N.G. Ustojchivost' dvizheniya. M.: Nauka. 1990 (In Russian).
  16. Barbashin E.A. Vvedenie v teoriyu ustojchivosti. M.: Nauka. 1967 (In Russian).
  17. La-Sall' Zh., Lefshec S. Issledovanie ustojchivosti pryamym metodom Lyapunova. M.: Mir. 1964 (In Russian).
  18. Takeuchi Y. Global dynamical properties of Lotka–Volterra systems. Hamamatsu: World Scientific. 1996.
Date of receipt: 17.01.2025
Approved after review: 31.01.2025
Accepted for publication: 26.02.2025