350 rub
Journal Nonlinear World №4 for 2024 г.
Article in number:
Nonlinear Schrodinger equation in a model for estimating and compensating the influence of thermal processes on the amplitude-phase distribution
Type of article: scientific article
DOI: 10.18127/j20700970-202404-17
UDC: 623.76.07
Authors:

A.S. Zakharov1, A.M. Savchuk2, V.V. Morozov3, D.A. Zvonarev4

1 Lomonosov Moscow State University (Moscow, Russia)
2 Yaroslavl State Agricultural Academy (Yaroslavl, Russia)
3 Tula State University (Tula, Russia)
1 zakharov.as17@physics.msu.ru, 2 savchuk@cosmos.msu.ru, 4zvonarev@cz71.ru

Abstract:

The article presents a description of the superresolution mode in space monitoring radars and the minimization of the non-identity of the amplitude distribution necessary for its implementation. The destabilizing factor in the case of non-identity is thermal processes and nonequilibrium losses in transmission channels that change the amplitude of the signal.

Due to the fact that a dynamic temperature change in space and time occurs in the sublattice of the active phased array antenna array, it is proposed to formalize a model for calculating corrections to the amplitude of signals, taking into account the known amplitude distribution calibration algorithm. At the same time, in order to formalize nonequilibrium processes in transmission channels, it is proposed to use the modified nonlinear Schrodinger equation and combine it with the calculation of thermal processes.

It is shown that the obtained nonlinear Schrodinger equation can be solved by solving the Zakharov-Shabat problem for the perturbed case, which makes it possible to solve this equation operationally.

Based on real data on changes in the amplitude of the signal under the influence of thermal processes, an initial boundary value problem of thermal conductivity in the sublattice of an active phased array antenna is obtained to find changes in the amplitude of the signal. An approximation of data on phase and amplitude changes for thermostatically controlled receiving and transmitting modules is presented, according to which the original exponential dependences of signal amplitudes on the steady-state temperature are obtained.

An important advantage of the proposed model is the joint consideration of deterministic thermal processes and nonequilibrium processes in transmission channels by solving two different initial boundary value problems, thereby solving both theoretical and practical problems.

Pages: 129-136

Zakharov A.S., Savchuk A.M., Morozov V.V., Zvonarev D.A. Nonlinear Schrodinger equation in a model for estimating and compensating the influence of thermal processes on the ampli-tude-phase distribution. Nonlinear World. 2024. V. 22. № 4.
P. 129–136. DOI: https://doi.org/10.18127/ j20700970-202404-17 (In Russian)

References
  1. Porsev V.I., Gelesev A.I., Kras'ko A.G. Uglovoe sverhrazreshenie signalov s ispol'zovaniem «virtual'nyh» antennyh reshetok. Vestnik Koncerna VKO «Almaz – Antej». 2019. № (4). S. 24–34. https://doi.org/10.38013/2542-0542-2019-4-24-34 (In Russian).
  2. Maceevich S.V., Vladko U.A., Zyuzina A.D., Mochalov M.N., Zaharov A.S. Primenenie pokazatelya kognitivnoj nagruzki graficheskogo elementa dlya obosnovaniya trebovanij k sisteme vizualizacii RLS dal'nego obnaruzheniya. Nauchnaya vizualizaciya. 2024. № 16.3. S. 87–96, DOI: 10.26583/sv.16.3.09 (In Russian).
  3. Shevcov V.A., Timoshenko A.V., Razin'kov S.N. Ocenka sostoyaniya bezopasnosti poleta vozdushnogo sudna na osnove analiza riskov aviacionnyh incidentov. Izv. vuzov. Ser. Aviacionnaya tekhnika. 2024. № 1. S. 39–44 (In Russian).
  4. Zverev G.P., Timoshenko A.V., Perlov A.Yu. i dr. Primenenie teorii nechetkih mnozhestv pri reshenii zadach upravleniya vremennym resursom radiolokacionnoj stancii monitoringa kosmicheskogo prostranstva. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2024. T. 24. № 3. S. 513–519. DOI 10.17586/2226-1494-2024-24-3-513-519 (In Russian).
  5. Zaharov A.S., Perlov A.Yu., Razin'kov S.N., Temnik Ya.A. Algoritm operativnoj kalibrovki amplitudno-fazovogo raspredeleniya krupnoaperturnyh aktivnyh fazirovannyh antennyh reshetok nazemnyh radiolokacionnyh stancij s uchetom teplovyh processov. Vozdushno-kosmicheskie sily. Teoriya i praktika. aprel' 2024. № 29. S. 94–102 (In Russian).
  6. Ablowitz M.J., Ablowitz M., Prinari B., Trubatch A. et al. Discrete and Continuous Nonlinear Schrödinger Systems. 2004. V. 302. Cambridge University Press.
  7. Yang J. Nonlinear waves in integrable and nonintegrable systems. 2010. V. 16. SIAM.
  8. Shabat A., Zakharov V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet physics JETP. 1972. № 34. С. 62.
  9. Zakharov V.E., Shabat A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. i, Funct. Anal. Appl. 1974. № 8. С. 226–235.
  10. Ablowitz M.J., Kaup D.J., Newell A.C., Segur H. The inverse scattering transform-fourier analysis for nonlinear problems. Stud. Appl. Math. 1974. № 53. С. 249–315.
  11. Zakharov V.E., Shabat A.B. Integration of nonlinear equations of mathematical physics by the method of inverse scattering. ii, Funct. Anal. Appl. 1979. № 13. С. 166–174.
  12. Ablowitz M.J., Segur H. Solitons and the inverse scattering transform. 1981. V. 4. Siam.
  13. Ablowitz M., Herbst B., Schober C. Computational chaos in the nonlinear schrödinger equation without homoclinic crossings. Physica A. 1996. № 228. С. 212–235.
  14. Novikov S., Manakov S., Pitaevskii L., Zakharov V. Theory of solitons: the inverse scattering method. Springer Science & Business Media. 1984.
  15. Copie F., Randoux S., Suret P. The Physics of the one-dimensional nonlinear Schrödinger equation in fiber optics: Rogue waves, modulation instability and self-focusing phenomena. Reviews in Physics. 2020. № 5. P. 100037. ff10.1016/j.revip.2019.100037ff. ffhal-02440836f
  16. Rejimberganov A.A., Rahimov I.D. Chislenno-analiticheskie resheniya nelinejnogo uravneniya shredingera. TVIM. 2020. № 1 (46) (In Russian).
  17. Lem D.L. Vvedenie v teoriyu solitonov. M.: Mir. 1983. 294 s. (In Russian).
  18. Konyuhov A.I. Preobrazovanie sobstvennyh znachenij zadachi zaharova-shabata pri stolknovenii solitonov. Izv. Saratovskogo un-ta Nov. ser. Ser. Fizika. 2020. № 4 (In Russian).
  19. Munoz-Ferreras J.M. And Perez-Martinez F. Super resolution versus Motion Compensation-Based Techniques for Radar Imaging Defense Applications. EURASIP Journal on Advances in Signal Processing. 2010. V. Article ID 308379. 9 p. DOI:10.1155/2010/308379
  20. Wang Y., Wang C. Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna. Electronics. 2020. № 9. P. 1211–1214.
  21. Xueming J., Manqing W. Jianmei T. Experimental study on a digital T/R module for phased array radar. CIE International Conference on Radar Proceedings. 2001. P. 898–902.
Date of receipt: 14.10.2024
Approved after review: 23.10.2024
Accepted for publication: 29.10.2024