A.V. Bondarev1, V.N. Efanov2, A.A. Kuchkarova3
1–3 Branch of the FSBI of Higher Education “Ufa University of Science and Technology” (Kumertau, Russia)
2 efanov@mail.ru
Formulation of the problem. A system of nonlinear equations describing the current-voltage characteristic of a memristor, the input data of which can strongly depend on various parameters, cannot be solved using the methods available in standard mathematics. Interval analysis methods developed to date are based on the use of arithmetic operations with real and complex numbers. The value of interval solutions lies in the fact that they generally allow one to obtain the most reliable solutions to the original problems, taking into account the possible ranges of changes in the initial and calculated values. Purpose of the study is tstudy the stability of nanoelectronic structures based on memristor elements under conditions of uncertain external influences. The article discusses the issues of assessing the robustness of memristor elements in order to increase the stability of their performance in nanoelectronic structures. The main idea of interval analysis is to replace arithmetic operations and real functions on real numbers with interval operations and functions that transform intervals containing these numbers. In interval analysis, the main object of study is the interval, which is a closed numerical interval. Interval analysis methods developed to date are based on the use of arithmetic operations with real and complex numbers. The use of interval analysis can help reduce errors in calculations and data storage in electronic devices. For example, when using memristors to store information, interval analysis can help take into account factors that influence errors in reading and writing data. Interval arithmetic allows you to take into account possible errors and uncertainties that may arise during measurements and calculations. This helps reduce the likelihood of errors and increase the accuracy of memristor performance predictions. The developed generalized structural-parametric model of a memristor allows us to evaluate all possible changes in the characteristics of the devices under study and avoid the need to go through all possible combinations of parameters when searching for the best option.
Bondarev A.V., Efanov V.N., Kuchkarova A.A. Development of structural-topological mathematical model of memristor for robustness analysis. Nonlinear World. 2024. V. 22. № 1. P. 56-63. DOI: https://doi.org/10.18127/j20700970-202401-07 (In Russian)
- Bondarev A.V., Efanov V.N. Dynamic mode of the mathematical model of an electric multipole with memresistive branches in conditions of interval uncertainty. II International scientific and practical conference «Actual problems of the energy complex: mining, production, transmission, processing and environmental protection» 16–17 April 2020. Moscow. Russian Federation. London. 2020. С. 012013.
- Bondarev V.A., Efanov V.N. Investigation of the robustness of nanoelectronic structures based on resonant tunneling elements. International Seminar on Electron Devices Design and Production. SED 2021. Proceedings. 2021. С. 9444533.
- Memristor. Nanowerk. URL: https://www.nanowerk.com/memristor.php (дата обращения: 01.05.23).
- Mladenov V. A. A Unified and Open LTSPICE Memristor Model. URL: https://www.researchgate.net/publication/3529 56375_A_Unified_and_Open_LTSPICE_Memristor_Model_Library.
- Bondarev A.V. Sistema podderzhki prinyatiya reshenij pri ocenke robastnosti slozhnyh bortovyh radioelektronnyh sistem na baze COTS-produktov: Diss. … kand. tekhn. nauk; Ufimskij gosudarstvennyj aviacionno-tekhnicheskij universitet. Ufa, 2011 (In Russian).
- Bondarev A.V., Efanov V.N. Analiz dinamicheskih processov v nanoelektronnyh strukturah na baze memrezistivnyh elementov. Izv. Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2021. T. 23. № 2 (100). S. 91–97 (In Russian).
- Bondarev A.V., Efanov V.N. Principy formirovaniya matematicheskoj modeli nanoelektronnyh komponentov kvantovyh vychislitel'nyh kompleksov s memrezistivnymi vetvyami. Sistemy upravleniya i informacionnye tekhnologii. 2020. № 1 (79). S. 4–10 (In Russian).
- Bondarev A.V., Efanov V.N. Staticheskij rezhim matematicheskoj modeli elektricheskogo mnogopolyusnika s memrezistivnymi vetvyami v usloviyah interval'noj neopredelennosti. Vestnik Rossijskogo novogo universiteta. Ser. Slozhnye sistemy: modeli, analiz i upravlenie. 2021. № 3. S. 3–13 (In Russian).
- Kochkarov R.A. Interval'nye zadachi na predfraktal'nyh grafah. Finansovyj universitet pri pravitel'stve RF. URL: https://cyberleninka.ru/article/n/intervalnye-zadachi-na-predfraktalnyh-grafah (In Russian).
- Matyushkin I.V. Nelinejno-dinamicheskij podhod v analize nestabil'nosti parametrov memristora «NII molekulyarnoj elektroniki». Izv. vuzov. Ser. Materialy elektronnoj tekhniki. URL: https://met.misis.ru/jour/article/view/344/303 (In Russian).
- Memristory – novyj tip elementov rezistivnoj pamyati dlya nanoelektroniki. Elektronika NTB. URL: https://www.electronics.ru/ journal/article/4756 (In Russian).
- Nesterov V.M. Tvinnye arifmetiki i ih primenenie v metodah i algoritmah dvustoronnego interval'nogo ocenivaniya. Sankt-Peterburgskij institut informatiki i avtomatizacii. URL: http://interval.ict.nsc.ru/Library/InteDiss/Nesterov-disser-1999.pdf (In Russian).