350 rub
Journal Nonlinear World №1 for 2024 г.
Article in number:
Multistability of roller structures under parametric excitation of capillary waves in a square cell with a round protrusion in the center
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202401-07
UDC: 535.246
Authors:

S.V. Kiyashko1, V.O. Afenchenko2, V.V. Chernov3

1-3 Institute of Applied Physics of Russian Academy of Science (Nizhny Novgorod, Russia)

1 kiyashko@appl.sci-nnov.ru; 2 afen@appl.sci-nnov.ru; 3 vcher@ipfran.ru

Abstract:

In nonlinear systems with instability, multistability often occurs. When studying processes occurring in real environments, the problem arises of finding paths leading to any state of equilibrium and searching for new stable states. In two-dimensional systems, they can consist of domains and differ in orientation in space.

The goal of the work is to experimentally determine the features of the generation of multidomain structures in a two-dimensional system in the presence of complex boundaries of a liquid layer that experiences periodic vertical oscillations.

The paper presents the results of an experimental study of the dynamics of roller domains of parametrically excited capillary waves in a square cell with a round insert in the center of the cell. In different domains, the rollers were oriented parallel and perpendicular to the boundaries of the cuvette and the boundaries of the circular insert. It was found that the dynamics of domains is determined by the movement of their fronts, and depending on the initial and boundary conditions, stable two-dimensional roller structures can appear at the edges of a square cell with a round protrusion in the center of the cell. In different domains, the rollers had different orientations. In this case, roundings with a large radius had the strongest effect on the dynamics of defects.

Multistability of equilibrium states of roller structures was discovered, characterized by the fact that, with constant system parameters, various scenarios of domain competition arose, leading to 11 different stable equilibrium states, which differed in the number of domains, their shape and the presence of spatial symmetry.

It turned out that during the occurrence of defects and the growth of domain walls, slow liquid flows arise near the boundaries of the cuvette and the circular insert. The rollers begin to move, and then a new stable equilibrium state is established in the form of a single domain containing one or two domain walls.

It has been experimentally shown that the most stable equilibrium states of domains arise when the circular protrusion is symmetrically positioned relative to the sides of the cuvette.

The results obtained may be of interest when studying the processes of establishing stable regimes in active media under strong competition and when studying the formation of two-dimensional structures from conducting particles capable of scattering electromagnetic waves.

Pages: 47-55
For citation

Afenchenko V.O., Kiyashko S.V., Chernov V.V. Multistability of roller structures under parametric excitation of capillary waves in a square cell with a round protrusion in the center. Nonlinear World. 2024. V. 22. № 1. P. 47-55. DOI: https://doi.org/10.18127/ j20700970-202401-06 (In Russian)

References
  1. Sun H., Ma L., and Wang L. Multistability as an indication of chaos in a discharge plasma. Phys. Rev. E 1995. V. 5. № 4.
    P. 3475.
  2. Gelens L., Beri S., Van der Sande, G., et. al. Exploring Multistability in Semiconductor Ring Lasers: Theory and Experiment. Phys. Rev. Lett. 2009. V. 102. № 19. P. 193904.
  3. Ngonghala C.N., Feudel U., Showalter K. Extreme multistability in a chemical model system. Phys. Rev. E 2011. V. 83. № 5. P. 056206.
  4. Duncan A., Liao S., Vejchodský T., Erban R., Grima R. Noise-induced multistability in chemical systems: Discrete versus continuum modeling. Phys. Rev. E 2015. V. 91. № 4. P. 042111.
  5. Shevtsova V.M., Melnikov D.E., Legros J.C. Multistability of oscillatory thermocapillary convection in a liquid bridge. Phys. Rev. E 2003. V. 68. № 6. P. 066311.
  6. Rabinovich M.I., Ezersky A.B., Weidman P.D. The dynamics of patterns. Singapore: World Scientific. 2000. 336 p.
  7. Zakharov V.E., L’vov V.S., Musher S.L. Transient behavior of a system of parametrically excited spin waves. Sov. Phys. Solid State. 1972. V. 14(3). P. 710-715.
  8. Reutov V.P. Tetragonal modulation cells at the parametric excitation of weakly damped capillary waves. European Journal of Mechanics B/Fluids. 2011. V. 30. № 3. P. 269-274.
  9. Ezersky A.B., Kiyashko S.V., Matusov P.A., Rabinovich M.I. Domain, domain walls and dislocations in capillary ripples. Europhys. Lett. 1994. V. 26. № 3. P. 183-188.
  10. Ezersky A.B., Nazarovsky A.V., Kiyashko S.V. Bound states of topological defects in parametrically excited capillary ripples. Physica D. 2001. V. 152-153. P. 310-324.
  11. Afenchenko V.O., Kijashko S.V., Piskunova L.V. Dvizhenie fronta pri konkurencii rolikovyh domenov parametricheski svjazannyh voln. Izvestija RAN Ser. Fizicheskaja. 2004. T. 68. № 12. S. 1771-1775 (In Russian).
  12. Kijashko S.V. Dinamika rolikovyh domenov parametricheski vozbuzhdaemyh kapilljarnyh voln. Izvestija vuzov. Ser. Radiofizika. 2008. T. LI. № 4. S. 359-365 (In Russian).
  13. Kiyashko S.V., Korzinov L.N., Rabinovich M.I., Tsimring L.S. Rotating spirals in a Faraday experiment. Phys. Rev. E 1996. V. 54. № 5. P. 5037-5040.
  14. Edwards W.S., Fauve S. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 1994. V. 278. P. 123-148.
  15. Kijashko S.V., Afenchenko V.O., Nazarovskij A.V. Mul'tistabil'nost' rolikovyh struktur pri parametricheskom vozbuzhdenii voln v kvadratnoj kjuvete s vnutrennimi granicami. Nelinejnyj mir. 2018. T. 16. № 1. S. 33-40 (In Russian).
  16. Kijashko S.V., Afenchenko V.O., Nazarovskij A.V. Dinamika rolikovyh domenov pri parametricheskom vozbuzhdenii kapilljarnyh voln v kvadratnoj kjuvete s zakruglennym uglom i vnutrennimi granicami. Nelinejnyj mir. 2018. T. 16. № 6. S. 3-10 (In Russian).
  17. Kijashko S.V., Afenchenko V.O Dinamika rolikovyh domenov pri parametricheskom vozbuzhdenii kapilljarnyh voln v kvadratnoj kjuvete s prjamougol'nym vystupom na granice. Nelinejnyj mir. 2019. T. 17. № 5. S. 5-13 (In Russian).
  18. Kiyashko S.V., Afenchenko V.O, Nazarovsky A.V. Dynamics of Roll Domains in a Rounded-Corner Cell. Phys. of Wave Phenomena. 2014. V. 22. № 2. P. 32.
  19. Chen P. Measurement of Mean Flows of Faraday Waves. Phys. Rev. Lett. 2004. V. 93. № 6. P. 064504.
  20. Kijashko S.V., Afenchenko V.O., Nazarovskij A.V. Mul'tistabil'nost' rolikovyh struktur parametricheski vozbuzhdaemyh kapilljarnyh voln pri mnogougol'noj forme granic. Izvestija vuzov. Ser. Radiofizika. 2016. T. 59. № 6. S. 489 (In Russian).
Date of receipt: 08.02.2024
Approved after review: 22.02.2024
Accepted for publication: 02.03.2024