O.V. Druzhinina1, I.I. Vasilyeva2, O.N. Masina3
1 FRC «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia)
1-3 Bunin Yelets State University (Yelets, Russia)
1 ovdruzh@ipiran.ru; 2 irinavsl@yandex.ru; 3 olga121@inbox.ru
Solving the problems of a formalized description of population-migration systems, as well as the development of methodological and instrumental support for their study are relevant areas of research. The essential aspects of studying such models are the search for parameters that ensure the coexistence of species, the analysis of stationary regimes, and the clarification of the nature of trajectories. The aim of the work is to design population dynamic models of the type "three competitors – three migration areas" and to analyze the main stages of computer research of this type of models. A description of the basic dynamic model "three competitors – three migration areas" is presented, taking into account competitive interactions and bidirectional migration flows relative to three shelters. A number of modifications of the basic nonlinear model are considered. For this type of models, the stages of computer research involving methods of optimization theory and numerical analysis based on differential evolution are proposed. The content of computer experiments is described, examples of the results of the search for optimal parameters are given. The results can be used in solving nonlinear dynamics problems related to modeling environmental, physical and chemical processes, as well as optimization and computational intelligence problems.
Druzhinina O.V., Vasilyeva I.I., Masina O.N. Design of population dynamic models of the “three competitors – three migration areas” type. Nonlinear World. 2023. V. 21. № 4. P. 33-38. DOI: https://doi.org/10.18127/j20700970-202304-04 (In Russian)
- Vol'terra V. Matematicheskaja teorija bor'by za sushhestvovanie. M.–Izhevsk: In-t komp'juternyh issledovanij. 2004 (In Russian).
- Svirezhev Ju.M., Logofet D.O. Ustojchivost' biologicheskih soobshhestv. M.: Nauka. 1978 (In Russian).
- Zhang X.-a., Chen L. The linear and nonlinear diffusion of the competitive Lotka–Volterra model. Nonlinear Analysis. 2007. V. 66. P. 2767–2776.
- Sadykov A., Farnsworth K.D. Model of two competing populations in two habitats with migration: Application to optimal marine protected area size. Theoretical Population Biology. 2021. V. 142. P. 114-122.
- Rai B., Freedman H.I., Addicott J.F. Analysis of three species models of mutualism in predator-prey and competitive systems. Math. Biosci. 1983. V 63. P. 13–50.
- Tuckwell H.C. A study of some diffusion models of population growth. Theoretical population biology. 1974. V. 5. P. 345–357.
- Chen X., Daus E.S., Jüngel A. Global Existence Analysis of Cross-Diffusion Population Systems for Multiple Species. Archive for Rational Mechanics and Analysis. 2018. V. 227. № 2. P. 715–747.
- Petrov A.A., Druzhinina O.V., Masina O.N. Application of the computational intelligence method to modeling the dynamics of multidimensional population system. Lecture Notes in Networks and Systems. 2023. V. 597. P. 565–575.
- Petrov A.A., Druzhinina O.V., Masina O.N., Vasil'eva I.I. Postroenie i analiz chetyrehmernyh modelej dinamiki populjacij s uchetom migracionnyh potokov. Uchenye zapiski UlGU. Ser. Matematika i informacionnye tehnologii. UlGU. Jelektronnyj zhurnal. 2022. № 1. S. 43–55 (In Russian).
- Vasil'eva I.I. Komp'juternoe modelirovanie sistemy populjacionnoj dinamiki s uchetom var'irovanija migracionnyh parametrov. Uchenye zapiski UlGU. Ser. Matematika i informacionnye tehnologii. UlGU. Jelektronnyj zhurnal. 2022. № 2. S. 21-30 (In Russian).
- Vasil'eva I.I., Druzhinina O.V., Masina O.N. Postroenie i issledovanie populjacionnyh dinamicheskih modelej tipa «dva konkurenta - dva areala migracii». Nelinejnyj mir. 2022. T. 20. № 4. S. 60-68. DOI: https://doi.org/10.18127/ j20700970-202204-06 (In Russian).
- Vasilyeva I.I., Demidova A.V., Druzhinina O.V., Masina O.N. Construction, stochastization and computer study of dynamic population models "two competitors – two migration areas". Discrete and Continuous Models and Applied Computational Science. 2023. V. 31(1). P. 27–45.