350 rub
Journal Nonlinear World №4 for 2023 г.
Article in number:
Control of multistability of roller structures under parametric excitation of capillary waves in a square cell with internal boundaries
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202304-03
UDC: 535.241
Authors:

V.O. Afenchenko1, S.V. Kiyashko2, V.V. Chernov3

1-3 Institute of Applied Physics of Russian Academy of Science (Nizhny Novgorod, Russia)

1 afen@appl.sci-nnov.ru; 2 kiyashko@appl.sci-nnov.ru; 3 vcher@ipfran.ru

Abstract:

In nonlinear systems with instability, multistability often occurs. When studying processes occurring in real environments, the problem arises of finding paths leading to any state of equilibrium and searching for new stable states. In two-dimensional systems, they can consist of domains and differ in orientation in space.

The goal of the work is to experimentally determine the features of the generation of multidomain structures in a two-dimensional system in the presence of complex boundaries of a liquid layer that experiences periodic vertical oscillations.

The paper presents the results of an experimental study of the dynamics of roller domains of parametrically excited capillary waves in a square cell with a square insert in the center of the cell. In different domains, the rollers were oriented parallel and perpendicular to the boundaries of the cuvette and the boundaries of the square insert. It was found that the dynamics of domains is determined by the movement of their fronts, and depending on the initial and boundary conditions, stable two-dimensional roller structures can appear at the edges of the cuvette with a rounded corner and a rectangular protrusion. In different domains, the rollers had different orientations. In this case, roundings with a large radius had the strongest effect on the dynamics of defects.

Multistability of equilibrium states of roller structures was discovered, characterized by the fact that, with constant system parameters, different scenarios of domain competition arose, leading to 7 different stable equilibrium states, which differed in the number of domains, their shape and the presence of spatial symmetry. It has been experimentally shown that the most stable equilibrium states of domains arise when the square protrusion is symmetrically positioned relative to the sides of the cuvette. It has been established that by creating additional initial disturbances at the cell boundary, it is possible to control the multistability of stable equilibrium states of competing domains.

The results obtained may be of interest when studying the processes of establishing stable regimes in active media under strong competition and when studying the formation of two-dimensional structures from conducting particles capable of scattering electromagnetic waves.

Pages: 24-32
For citation

Afenchenko V.O., Kiyashko S.V., Chernov V.V. Control of multistability of roller structures under parametric excitation of capillary waves in a square cell with internal boundaries. Nonlinear World. 2023. V. 21. № 4. P. 24-32. DOI: https://doi.org/10.18127/j20700970-202304-03 (In Russian)

References
  1. Sun H., Ma L., Wang L. Multistability as an indication of chaos in a discharge plasma. Phys. Rev. E 1995, V. 51. № 4. P. 3475.
  2. Gelens L., Beri S., Van der Sande, G., et. al. Exploring Multistability in Semiconductor Ring Lasers: Theory and Experiment. Phys. Rev. Lett. 2009. V. 102. № 19. P. 193904.
  3. Ngonghala C.N., Feudel U., Showalter K. Extreme multistability in a chemical model system. Phys. Rev. E. 2011. V. 83. № 5. P. 056206.
  4. Duncan A., Liao S., Vejchodský T., Erban R., Grima R. Noise-induced multistability in chemical systems: Discrete versus continuum modeling. Phys. Rev. E. 2015. V. 91. № 4. P. 042111.
  5. Shevtsova V.M., Melnikov D.E., Legros J.C. Multistability of oscillatory thermocapillary convection in a liquid bridge. Phys. Rev. E. 2003. V. 68. № 6. P. 066311.
  6. Rabinovich M.I., Ezersky A.B., Weidman P.D. The dynamics of patterns. Singapore: World Scientific. 2000. 336 p.
  7. Zakharov V.E., L’vov V.S., Musher S.L. Transient behavior of a system of parametrically excited spin waves. Sov. Phys. Solid State. 1972. V.14. № 3. Р. 710-715.
  8. Reutov V.P. Tetragonal modulation cells at the parametric excitation of weakly damped capillary waves. European Journal of Mechanics B/Fluids. 2011. V. 30. № 3. P. 269-274.
  9. Ezersky A.B., Kiyashko S.V., Matusov P.A., Rabinovich M.I. Domain, domain walls and dislocations in capillary ripples. Europhys. Lett. 1994. V. 26. № 3. P. 183-188.
  10. Ezersky A.B., Nazarovsky A.V., Kiyashko S.V. Bound states of topological defects in parametrically excited capillary ripples. Physica D. 2001. V. 152-153. P. 310-324.
  11. Afenchenko V.O., Kijashko S.V., Piskunova L.V. Dvizhenie fronta pri konkurencii rolikovyh domenov parametricheski svjazannyh voln. Izv. RAN. Ser. Fiz. 2004. T. 68. № 12. S. 1771-1775 (In Russian).
  12. Kijashko S.V. Dinamika rolikovyh domenov parametricheski vozbuzhdaemyh kapilljarnyh voln. Izvestija vuzov. Ser. Radiofizika. 2008. T. LI. № 4. S. 359-365 (In Russian).
  13. Kiyashko S.V., Korzinov L.N., Rabinovich M.I., Tsimring L.S. Rotating spirals in a Faraday experiment. Phys. Rev. E. 1996. V. 54. № 5. P. 5037-5040.
  14. Edwards W.S., Fauve S. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 1994. V. 278. P. 123-148.
  15. Kijashko S.V., Afenchenko V.O., Nazarovskij A.V. Mul'tistabil'nost' rolikovyh struktur pri parametricheskom vozbuzhdenii voln v kvadratnoj kjuvete s vnutrennimi granicami. Nelinejnyj mir. 2018. T. 16. № 1. S. 33-40 (In Russian).
  16. Kijashko S.V., Afenchenko V.O., Nazarovskij A.V. Dinamika rolikovyh domenov pri parametricheskom vozbuzhdenii kapilljarnyh voln v kvadratnoj kjuvete s zakruglennym uglom i vnutrennimi granicami. Nelinejnyj mir. 2018. T. 16. № 6. S. 3-10 (In Russian).
  17. Kijashko S.V., Afenchenko V.O Dinamika rolikovyh domenov pri parametricheskom vozbuzhdenii kapilljarnyh voln v kvadratnoj kjuvete s prjamougol'nym vystupom na granice. Nelinejnyj mir. 2022. Т. 20. № 3. S. 17-27. DOI: https://doi.org/10.18127/j20700970-202203-02 (In Russian).
  18. Kiyashko S.V., Afenchenko V.O, Nazarovsky A.V. Phys. of Wave Phenomena. 2014. V. 19. № 2. P. 32.
Date of receipt: 29.09.2023
Approved after review: 18.10.2023
Accepted for publication: 20.11.2023