S.Ya. Grodzenskiy1
1 MIREA – Russian University of Technology (Moscow, Russia)
In 1927, M. Frechet derived the probability distribution, which is used to analyze extreme phenomena related to the environment. P. Rozin and E. Rambler in 1933, this distribution is used to obtain a formula for the distribution of coal particles by size. In 1939, V. Weibull, when studying the issues of fatigue of materials and analyzing failures caused by the wear of ball bearings, used a distribution with a reliability function of the form, where T, s, t0 – are the scale, shape, and shift parameters.
In 1942, B.V. Gnedenko established that the distribution described by Weibull is one of the types of distribution of minima. Since the mid-1950s, interest in this distribution function has been growing rapidly, and the name "Weibull distribution" has been assigned to it. The dependence of the failure rate of technical objects on time is generally U-shaped. There are three periods: I – running–in, II – "normal operation" and III - wear. The Weibull distribution makes it possible to describe any of them: during the period of "childhood illnesses" s <1, during the period of "normal operation" s = 1, during the period of wear s > 1. By the value of s, it is possible to make an assumption about the nature of the malfunction and put forward proposals for its elimination. At the same time, the Weibull distribution is not flexible enough to describe the entire U-shaped dependence.
The article analyzes some generalized Weibull distributions and shows that in this case the dependence l(t) is not U-shaped, but rather V-shaped – there is no region of constancy of the failure rate. Of interest is the five-parametric logarithmically normal modified Weibull distribution, the concept of which is based on the division of failures into sudden, obeying the logarithmically normal distribution, and gradual − modified Weibull distribution. A model of resource consumption is proposed, according to which, in period I, the reliability of an object is due to its initial quality, determined by the intensity decreasing over time, and in period III − the rate of accumulation of irreversible changes with increasing intensity. Based on this interpretation of the "lambda characteristic", it is proposed to use a mixture of exponential and Weibull distributions
Grodzenskiy S.Ya. Weibull disytibution: history and modernity. Nonlinear World. 2023. V. 21. № 3. P. 54-65. DOI: https://doi.org/10.18127/j20700970-202303-06 (In Russian)
- Frechet M. Sur la loi de probabilite de l’ecart maximum. Annales de la Societe polonaise de Mathematique (Cracovie), 1927. V. 6. Р. 93–116.
- Rosin P., Rammler E. The laws governing the fineness of powdered coal. Journal of the Institute of Fuel. 1933. V. 7. № 1. Р. 29–36.
- Weibull W. A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademien Handlingar. 1939. Nr. 151. Р. 1–45.
- Weibull W. The phenomenon of rupture in solids. Ingeniors Vetenskaps Akademien Handlingar. 1939. Nr. 153. Р. 16–53.
- Vejbull V. Ustalostnye ispytanija i analiz ih rezul'tatov. M.: Mashinostroenie. 1964. 276 s. (In Russian).
- Gnedenko B.V. Predel'nye teoremy dlja maksimal'nogo chlena variacionnogo rjada. Doklady AN SSSR. Novaja serija. 1941. T. 32. № 1 (In Russian).
- Gnedenko B.V. Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics. 1943. V. 44.
№ 3. Р. 423–453. - Weibull W. A statistical distribution function of wide applicability. Journal of Applied Mechanics ASME. 1951. V. 18.
№ 3. Р. 293–297. - Weibul W. References on Weibull distribution. A report, forsvarets teletekniska laboratorium. Stockholm: FTL. 1977.
- Grodzenskij S.Ja. Statistiko-fizicheskij podhod k issledovaniju nadezhnosti izdelij jelektronnoj tehniki. Jelektronnaja promyshlennost'. 1991. № 12. S. 33−36 (In Russian).
- Grodzensky S.Ya. A statistical physics method of electronic device reliability testing from working data pages. Measurement Techniques. 2003. V. 46. № 6. Р. 616−618.
- Le Cam L. Maximum likelihood; an introduction. Intern. Stat. Rev. 1990. V. 58. P. 153–171.
- Grodzenskij S.Ja. Modeli nadezhnosti na osnove modificirovannyh raspredelenij Vejbulla. Izmeritel'naja tehnika. 2013. № 7. S. 27−31 (In Russian).
- Chin-Diew Lai. Generalized Weibull Distributions. Heidelberg New York Dordrecht London: Springer. 2014. 118 p.
- Kies J.A. The Strength of Glass. Naval Research Laboratory. Washington DC. Report. 1958. № 5093.
- Stacy E.W. A generalization of the gamma distribution. Annals Math. Statistics, 1962. V. 33. P. 1187–1192.
- White J.S. The moments of log-Weibull order statistics. Technometrics. 1969. V. 11. Р. 373−386.
- Phani K.K. A new modified Weibull distribution function. Communications of the American Ceramic Society. 1987.
V. 70. Р. 182–184. - Mudholkar G.S., Srivastava D.K. Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability. 1993. V. 42. Р. 299−302.
- Mudholkar G.S., Srivastava D.K., Freimer M. The exponentiated Weibull family: A reanalysis of bus-motor-failure data. Technometrics. 1995. V. 37. Р. 436–445.
- Mudholkar G.S., Hutson A.D. The exponentiated Weibull family: some properties and a flood data application. Communications in Statistics – Theory and Methods. 1996. V. 25(12). Р. 3059–3083.
- Mudholkar G.S., Kollia G.D. Generalized Weibull family: A structural analysis. Communications in Statistics − Theory and Methods. 1994. V. 23. Р. 1149–1171.
- Lai C.D., Xie M., Murthy D. Modified Weibull model. IEEE Transactions on Reliability. 2003. V. 52. Р. 33–37.
- Lai C.D., Zhang L.Y., Xie M. Mean residual life and other properties of Weibull related bathtub shape failure rate distributions. International Journal of Reliability, Quality and Safety Engineering. 2004. V. 11(2). Р. 113–132.
- Xie M., Tang Y. Goh T.N. A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering and System Safety. 2002. V. 76. Р. 279–285.
- Nadarajah S., Kotz S. On some recent modifications of Weibull distribution. IEEE Transactions on Reliability. 2005. V. 54(4). Р. 561–562.
- Shakhatreh M., Lemonte A., Arenas G. The log-normal modified Weibull distribution and its reliability implications. Reliability engineering & System safety. 2019. V. 188. Р. 6−22.
- Grodzenskij S.Ja., Kiselevich V.P., Hramov M.Ju. Raspredelenie momentov vozniknovenija otkazov radiojelektronnoj apparatury. Nelinejnyj mir. 2016. № 4. S. 55−58 (In Russian).
- Grodzenskij S.Ja., Grodzenskij Ja.S., Mareshhenkov P.V. Statistiko-fizicheskij analiz nadezhnosti izdelij radio-jelektroniki na osnove smesi raspredelenij. Uspehi sovremennoj radiojelektroniki. 2021. T. 75. № 12. S. 63−68. DOI: https://doi.org/10.18127/j20700784-202112-05 (In Russian).