A.N. Chesalin1
1 MIREA - Russian Technological University (Moscow, Russia)
Problem statement. The problem of change detection of technological processes, which consists in deviation from the normality of both the sample mean and the sample variance, is investigated. For this purpose, various types of control charts are considered, which make it possible to effectively detect cases of simultaneous changes in the mean value of the parameter and the variance. By the method of statistical modeling, an analysis of the comparative effectiveness of chaets is carried out, practical recommendations are given.
Purpose. To conduct a comparative analysis of the effectiveness of double control charts and give recommendations on their practical application in statistical control of production processes
Results. By the method of statistical modeling, estimates of the effectiveness of double control charts were obtained. As a result of the simulation, recommendations for the use of each of the charts are given and it is noted that in general, the most effective is a double sum of squares chart.
Practical significance. The learned results can be used when choosing tools for effective statistical control of technological processes. For this purpose, the paper presents the formula dependencies of statistics and control boundaries of double control charts, as well as the obtained estimates of the comparative effectiveness of double control charts are presented in the form of heat charts convenient for visual analysis.
Чесалин А.Н. Исследование эффективности обнаружения разладки технологических процессов на основе статистического моделирования // Нелинейный мир. 2022. Т. 20. №3. С. 28-34. DOI: https://doi.org/10.18127/j20700970-202203-03
- Uiler D., Chamberg D. Statisticheskoe upravlenie processami: Optimizacija biznesa s ispol'zovaniem kontrol'nyh kart Shuharta. M.: Al'pina Pablisher. 2017. 409 s. (In Rusian).
- Adler Ju.P., Shper V.L. Statisticheskoe upravlenie processami. M.: Izdatel'skij Dom MISiS. 2015. 236 s. (In Rusian).
- Kljachkin V.N. Mnogomernyj statisticheskij kontrol' tehnologicheskogo processa. M.: Finansy i statistika. 2022. 192 s.
(In Rusian). - Fam Van Ty., Chesalin A. N., Grodzenskij Ja.S, Emanakov I.V. Povyshenie jeffektivnosti kontrol'noj karty s pomoshh'ju nechetkih mnozhestv. Kachestvo i zhizn'. 2021. № 2(30). S. 37-43 (In Rusian).
- Chesalin A.N., Grodzenskij S.Ja., Nilov M.Ju., Fam. Van Ty Intellektual'nye instrumenty upravlenija kachestvom cifrovogo proizvodstva. Standarty i kachestvo. 2020. № 3. S. 68-72 (In Rusian).
- Grodzenskij S.Ja., Chesalin A.N. Ispol'zovanie apparata nechetkoj logiki dlja ocenki nadezhnosti avtomatizirovannyh sistem. Nelinejnyj mir. 2017. T. 15. № 4. S. 17-23 (In Rusian).
- Chao M.T., Cheng S.W. Semicircle control chart for variables data. Quality Engineering. 1996. № 8. P. 441-446.
- Chen, G., Cheng S.W. Max chart: combining X-bar chart and S chart. Statistica Sinica. 1998. №. 8. P. 263-271.
- Thaga K. SS-CUSUM chart. Economic Quality Control. 2009. № 24(1). P. 117–28.
- Thaga K., Sivasamy R. Single Variables Control Charts: A Further Overview. Indian Journal of Science and Technology. 2015. № 8(6). P. 518–528.
- Khusna H., et al Residual-based maximum MCUSUM control chart for joint monitoring the mean and variability of multivariate autocorrelated processes. Production & Manufacturing Research. 2019. № 7(1). P. 364-394.