350 rub
Journal Nonlinear World №1 for 2022 г.
Article in number:
Parametric intervals of interpretability in iterative models of real ecological processes
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202201-04
UDC: 629.075, 519.5
Authors:

A.Yu. Perevaryukha1

1 St. Petersburg Federal Research Center of the Russian Academy of Sciences (St. Petersburg, Russia)

Abstract:

Formulation of the problem. We need to determine the features of different biological processes, the specifics of which must be taken into account when choosing a mathematical apparatus for modeling their changes. With the use of functional iterative structures, it is possible to implement a diverse range of trajectory behavior modes and obtain their changes, smooth or rapid. Nowadays, not only ordinary discrete mappings are used, but also their extensions in models based on dynamical systems with a variable evolution operator, the variants of which we proposed earlier.

Target. Identify traits and characteristics for a multivariate iterative population model that can generate redundant nonlinear effects. We cannot compare these effects with the ecological reality, but under other conditions the solutions of the models will be quite explicable.

Results. It is shown that intervals of values with an internal crisis of the attractor can imperceptibly and narrowly wedge into the range of admissible variation of parameters in a computational experiment. It was possible to reveal the existence of parametric ranges for the known models, for which the behavior of the trajectory cannot be properly interpreted in biological problems, and a method for circumventing this problem was proposed.

Practical significance. We have proposed a method for differentiating the parameters of population models that cause bifurcations, presenting them as interval specified values to exclude excessive metamorphoses of the phase portrait by the example of models of the dynamics of fish stock replenishment.

Pages: 55-64
For citation

Perevaryukha A.Yu. Parametric intervals of interpretability in iterative models of real ecological processes. Nonlinear World. 2022. V. 20. № 1. P. 55-64. DOI: https://doi.org/10.18127/j20700970-202201-06 (In Russian)

References
  1. Perevarjuha A.Ju. Haoticheskie rezhimy v modeljah teorii formirovanija popolnenija populjacij. Nelinejnyj mir. 2009. T. 7.
    № 12. S. 925-932 (In Russian).
  2. Perevarjuha A.Ju. Interpretacija povedenija modelej dinamiki bioresursov i momental'naja haotizacija v novoj modeli. Nelinejnyj mir. 2012. T. 10. № 4. S. 255-262 (In Russian).
  3. Mihajlov V.V., Perevarjuha A.Ju. Modelirovanie processa stremitel'noj jevtrofikacii krupnogo ozera i ego vlijanija na blagopoluchie avtohtonnoj ihtiofauny. Nelinejnyj mir. 2018. T. 16. № 4. S. 45-53 (In Russian).
  4. Feigenbaum M.J. Universal behavior in nonlinear systems. Physica D. 1983. V. 7. P. 16–39.
  5. Zhivotovskij L.A., Hramcov V.V. Model' dinamiki chislennosti gorbushi Oncorhynchus gorbusha. Voprosy ihtiologii. 1996. T. 36. № 3. S. 369–385 (In Russian).
  6. Rozenberg G.S. Uord Klajd Olli i princip agregacii osobej. Samarskaja Luka: problemy regional'noj i global'noj jekologii. 2020. T. 29. № 3. S. 77-88 (In Russian).
  7. Singer D. Stable orbits and bifurcations of the maps on the interval. SIAM journal of applied math. 1978. V. 35. P. 260–268.
  8. Sharkovskij A.N. O pritjagivajushhih i pritjagivajushhihsja mnozhestvah. DAN SSSR. 1965. T. 160. S. 1036–1038 (In Russian).
  9. Guckenheimer J. Sensitive dependence on initial conditions for one dimensional maps. Comm. Mathem. Physics. 1979.
    V. 70. P. 133-160.
  10. Anishhenko V.S., Vadivasova T.E., Okrokverchov G.A., Strelkova G.I. Statisticheskie svojstva dinamicheskogo haosa. Uspehi fizicheskih nauk. 2005. T. 175. № 2. S. 163–179 (In Russian).
  11. Borisova T.Ju., Solov'eva I.V. Problemnye aspekty modelirovanija populjacionnyh processov i kriterii ih soglasovanija. Matematicheskie mashiny i sistemy. 2017. № 1. S. 71-81 (In Russian).
  12. Dubrovskaja V.A., Trofimova I.V. Model' dinamiki strukturirovannyh subpopuljacij osetrovyh ryb Kaspija s uchetom otklonenij v tempah razvitija molodi. Zhurnal Belorusskogo gosudarstvennogo universiteta. Biologija. 2017. № 3. S. 76-86 (In Russian).
  13. Nikitina A.V. Jekologo-gidrofizicheskoe obosnovanie vlijanija kojefficienta vertikal'nogo turbulentnogo obmena na soderzhanie rastvorennogo kisloroda v pridonnom sloe melkovodnogo vodoema. Uspehi sovremennogo estestvoznanija. 2018. № 1.
    S. 115-119 (In Russian).
  14. Solov'eva T.N. Dinamicheskaja model' degradacii zapasov osetrovyh ryb so slozhnoj vnutripopuljacionnoj strukturoj. Informacionno-upravljajushhie sistemy. 2016. № 4. S. 60-67 (In Russian).
  15. Mihajlov V.V., Reshetnikov Ju.S. Model' dinamiki populjacii ryb s raschetom tempov rosta osobej i scenariev gidrologicheskoj obstanovki. Informacionno-upravljajushhie sistemy. 2018. № 4. S. 31-38 (In Russian).
Date of receipt: 16.08.2021
Approved after review: 10.11.2021
Accepted for publication: 17.02.2022