Y.V. Talagaev
RAF ME and SC «AFA named after Professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh, Russia)
Synchronization is one of the crucial control problems in coordinated behavior systems. A wide range of applications necessitates the development and improvement of approaches to solving the linearization problem for non-linear systems with complex behavior. Hence the paper offers an approach to solving the problem of chaotic system coordinate synchronization based on the use of fuzzy remodeling and superstability conditions. It is shown that transition from general (non-linear) synchronization problem statement to fuzzy description with fuzzy Takagi-Sugeno models allows transforming the initial task to a well understood problem of fuzzy T-S system stabilization that describes the dynamics synchronization error. As a candidate solution for the problem we offer a way of implementing superstability conditions that reduce the task of finding fuzzy regulator to solving a linear programming task. It is shown that implementation of superstability conditions not only presents a simple way of solving the problem, but also has practical value. Superstability provides the monotonesness of the transient process of synchronization without sharp spikes of solution norm. The efficiency of the offered approach is demonstrated by the example of synchronization of two hyperchaotic systems. To prove the efficiency of superstability conditions the solution of the robust synchronization problem with parametric uncertainty in system matrices is given. The presented results can be applied for synchronization of various nonlinear systems demonstrating chaotic dynamics.
Talagaev Y.V. Fuzzy remodeling and synchronization of nonlinear systems. Nonlinear World. 2021. V. 19. № 3. 2021. P. 46−56. DOI: https://doi.org/10.18127/j20700970-202103-05 (In Russian)
- Amelina N.O., Anan'evskij M.S., Andrievskij B.R. i dr. Problemy setevogo upravlenija. Pod red. A.L. Fradkova. M.-Izhevsk: Institut komp'juternyh issledovanij. 2015. 392 s. (In Russian).
- Wu C. Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific. 2008. 168 p.
- Boccaletti S., Pisarchik A.N., del Genio C.I., Amann A. From Coupled Systems to Complex Networks. Cambridge University Press. 2018.
- Pecora L.M., Carroll T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990. V. 64. P. 821–825.
- Pecora L.M., Carroll T.L. Synchronization of chaotic systems. Chaos. 2015. V. 25. № 9. P. 097611.
- Talagaev Ju.V., Saraev P.V. Remodelirovanie nelinejnyh sistem na osnove nechetkih modelej Takagi-Sugeno. Nelinejnyj mir. 2020. T. 18. № 2. S. 18–32.
- Tanaka K., Wang H.O. Fuzzy control systems design and analysis: a linear matrix inequality approach. New York, Wiley. 2001. 320 p.
- Lam H.-K., Leung F. H.-F. Stability Analysis of Fuzzy-Model-Based Control Systems. Linear-Matrix-Inequality Approach. Berlin, Springer-Verlag. 2011. 226 p.
- Benzaouia A., Hajjaji A.E. Advanced Takagi-Sugeno Fuzzy Systems: Delay and Saturation. Springer, Berlin. 2014. 294 p.
- Druzhinina O.V., Masina O.N. Metody analiza ustojchivosti dinamicheskih sistem intellektnogo upravlenija. Moskva: URSS. 2016. 248 s. (In Russian).
- Masina O.N., Druzhinina O.V., Afanas'eva V.I. Analiz ustojchivosti diskretnyh sistem upravlenija na osnove funkcij Ljapunova i svojstv linejnyh matrichnyh neravenstv. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2011. T. 9. № 7. S. 53–62 (In Russian).
- Druzhinina O.V., Masina O.N. O podhodah k analizu ustojchivosti nelinejnyh dinamicheskih sistem s logicheskimi reguljatorami. Sovremennye informacionnye tehnologii i IT-obrazovanie. 2017. №13 (2). S. 40–49 (In Russian).
- Igonina E.V., Masina E.V., Druzhinina O.V. Analiz ustojchivosti dinamicheskih sistem na osnove metodov intellektnogo upravlenija i svojstv linejnyh matrichnyh neravenstv. Elec: Eleckij gos. un-t im. I.A. Bunina. 2020. 174 s. (In Russian).
- Talagaev Ju.V. Analiz i sintez sverhustojchivyh nechetkih sistem Takagi−Sugeno. Problemy upravlenija. 2016. № 6. S. 2–11 (In Russian).
- Talagaev Y.V. An Approach to analysis and stabilization of Takagi-Sugeno fuzzy control systems via superstability conditions. IFAC-PapersOnLine. 2015. V. 48. № 11. P. 426–433.
- Talagaev Y.V. State estimation and stabilization of continuous-time Takagi-Sugeno fuzzy systems with constraints of positiveness and superstability. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2017. P. 8015437.
- Yan M., Zheng X. and Xue Z. ILMI Approach to Static Output Feedback Fuzzy Control for Synchronization of Hyperchaotic Systems via T-S Models. The Open Cybernetics & Systemics Journal. 2014. V. 8. P. 309–315.
- Poljak B.T, Shherbakov P.S. Sverhustojchivye linejnye sistemy upravlenija. I. Analiz. Avtomatika i tele¬mehanika. 2002. № 8. S. 37–53 (In Russian).