300 rub
Journal Nonlinear World №3 for 2021 г.
Article in number:
Design and analysis of a mathematical model of the motion of a heterogeneous fluid in a well
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202103-04
UDC: 519.7
Authors:

N.P. Petrov1, S.N. Petrova2, N. V. Korzhavina3, E. V. Lisovsky4

1 Cheboksary Institute (branch) Moscow Polytechnic University (Cheboksary, Russia)

2,3 Technical University of the Ural Mining and Metallurgical Company (Verkhnyaya Pyshma, Russia)

3 Ural State Low University (Ekaterinburg, Russia)

2  Technical University of the Ural Mining and Metallurgical Company (Verkhnyaya Pyshma, Russia)

4  Kaluga branch of the Bauman Moscow State Technical University (Moscow, Russia) 

Abstract:

The development of methods for modeling the motion of fluid in a well is an urgent area of both theoretical and applied interest. In mathematical modeling of real processes of fluid motion, it is possible to use a description using continuous distributions and use a well-developed apparatus of continuum mechanics and differential calculus. The purpose of the work is to synthesize and analyze a model of the motion of a heterogeneous fluid in a well based on the methods of continuum mechanics and differential calculus. The issues of constructing and studying models of the motion of a multiphase fluid in a well are considered. Systems of equations of conservation of phase masses, momentum and energy of a two-phase mixture are studied. The approach to the search for the optimal pressure of liquid supply to the well and to the estimation of the velocity distribution of liquid and particles is described. The results can find applications in modeling processes related to fluid movement, as well as in the development of technologies in the oil and gas industry, as well as technologies aimed at ensuring environmental safety.

Pages: 37-45
For citation

Petrov N. P., Petrova S. N., Korzhavina N. V., Lisovsky E. V. Design and analysis of a mathematical model of the motion of a heterogeneous fluid in a well. Nonlinear World. 2021. V. 19. № 3. 2021. P. 37−45. DOI: https://doi.org/10.18127/j20700970202103-04 (In Russian)

References
  1. Golubeva O.V. O rabotah v oblasti mehaniki sploshnyh sred kollektiva kafedry teoreticheskoj fiziki MOPI im. N.K. Krupskoj. Uchenye zapiski MOPI im. N.K. Krupskoj. T. 200. Teoreticheskaja fizika. Vyp. 7. 1968. S. 5–11 (In Russian).
  2. Golubeva O.V. Uravnenija dvumernyh dvizhenij ideal'noj zhidkosti po krivolinejnoj poverhnosti i ih primenenie v teorii fil'tracii. PMM. 1950. T. 14. Vyp. 3. S. 287–294 (In Russian).
  3. Petrov N.P., Petrova S.N., Korzhavina N.V., Korablev D.D. Modelirovanie slozhnyh sistem, opisyvajushhih zagrjaznenie skvazhin fil'tracionnymi potokami. 2020. S. 229–232 (In Russian).
  4. Le Meote B. Vvedenie v gidrodinamiku i teoriju voln na vode. L: Gidrometeoizdat. 1974. 367 s.  (In Russian).
  5. Lojcjanskij L.G. Mehanika zhidkosti i gaza. M.: Nauka. 1978. 736 s (In Russian).
  6. Nigmatulin R.I. Dinamika mnogofaznyh sred. Ch.1. M.: Nauka. 1987. 464 s. (In Russian).
  7. Basniev K.S. Neftegazovaja gidromehanika. M.–Izhevsk: In-t komp'juternyh issledovanij. 2005. 544 s (In Russian).
  8. Hasanov M.M. Modelirovanie processov neftegazodobychi. M.–Izhevsk: In-t komp'juternyh issledovanij. 2004. 368 s. (In Russian).
  9. Golubeva O.V., Murodov I.S. Model' raboty skvazhiny v potoke gruntovyh vod vblizi zagrjaznennogo bassejna. Nekotorye modeli sploshnyh sred i ih prilozhenija. M.: Nauka.1988. S. 12–17 (In Russian).
  10. Amiraslanov I.A., Cherepanov G.P. Fil'tracija zhidkosti v krivolinejnyh slojah peremennoj tolshhiny. PMM. 1981. Vyp. 6.  S. 1142–1146 (In Russian).
  11. Gladyshev Ju.A. Nekotorye voprosy nestacionarnoj fil'tracii v iskrivlennom sloe peremennoj tolshhiny. Gidrodinamika. (Materialy soveshhanija sekcii fiziki po gidrodinamike 14–15 aprelja 1970 g.). M.: MOIP. 1970. S. 7–12 (In Russian).
  12. Basko D.V., Tolpaev V.A., Paliev V.V. Dvumernye matematicheskie modeli linejnoj fil'tracii zhidkosti i gaza v iskrivlennyh plastah konechnoj tolshhiny. Izvestija vysshih uchebnyh zavedenij. Severo-Kavkazskij region. Ser. Estestvennye nauki. 2008. № 2. S. 43–47 (In Russian).
  13. Paliev V.V., Tolpaev V.A. Uravnenie nerazryvnosti v dvumernyh modeljah fil'tracii zhidkosti i gaza v iskrivlennyh plastah konechnoj tolshhiny. Izvestija Saratovskogo universiteta. Ser. «Matematika. Mehanika. Informatika». Vyp. 2. 2007. S. 49–53 (In Russian).
  14. Tolpaev V.A. Matematicheskie modeli dvumernoj fil'tracii zhidkosti i gaza v iskrivlennyh neodnorodnyh plastah. Vestnik MGOU. Ser. «Fizika. Matematika». 2015. № 1. S. 70–84 (In Russian).
  15. Tolpaev V.A., Basko D.V. Matematicheskaja model' linejnogo uprugogo rezhima fil'tracii v iskrivlennyh plastah peremennoj tolshhiny. Neftepromyslovoe delo. 2008. № 12. S. 9–13 (In Russian).
  16. Shpilevoj A.Ja., Voljanskaja I.K., Martynov V.S. Teoreticheskoe issledovanie uslovij raboty skvazhiny bez zagrjaznenija vblizi morskogo poberezh'ja. Vestnik Baltijskogo gosudarstvennogo universiteta im. I. Kanta. 2011. Vyp. 5. S. 23–27 (In Russian).
  17. Petrov N.P., Petrova S.N., Korzhavina N.V. Model' zagrjaznenija skvazhiny fil'tracionnymi potokami. Naukoemkie tehnologii. 2018. T.19. № 4. S. 4–8 (In Russian).
  18. Petrov N.P., Petrova S.N., Korzhavina N.V., Bajmanov S.S., Ishmurzin R.A. Voprosy matematicheskogo modelirovanija processov zagrjaznenija skvazhin fil'tracionnymi potokami. Materialy V Mezhdunar. nauch.-praktich. konf. «Sistemy upravlenija, tehnicheskie sistemy: ustojchivost', stabilizacija, puti i metody issledovanija». Elec: EGU im. I.A. Bunina. 2019. S. 112–115 (In Russian).
  19. Petrov N.P., Petrova S.N., Korzhavina N.V., Korablev D.D. Modelirovanie slozhnyh sistem, opisyvajushhih zagrjaznenie fi'tracionnymi potokami. Materialy VI Mezhdunar. nauch.-praktich. konf. «Sistemy upravlenija, slozhnye sistemy: modelirovanie, ustojchivost', stabilizacija, intellektual'nye tehnologii». Elec: EGU im. I.A. Bunina. 2020. S. 229–232 (In Russian).
  20. Petrov N.P., Petrova S.N., Korzhavina N.V., Gevejler N.S. Matematicheskoe modelirovanie dvizhenija geterogennoj zhidkosti v skvazhine potokami. Materialy VII Mezhdunar. nauch.-praktich. konf. «Sistemy upravlenija, slozhnye sistemy: modelirovanie, ustojchivost', stabilizacija, intellektual'nye tehnologii». Elec: EGU im. I.A. Bunina. 2021. S. 66–70 (In Russian).
  21. Zajcev O.I., Kozhevnikova E.N., Loktionova E.A., Orlov V.T. Substancial'naja proizvodnaja i ee ispol'zovanie v gidravlike. Stroitel'stvo unikal'nyh zdanij i sooruzhenij. 2013. № 8(13). S. 34–41 (In Russian).
  22. Shestakov A.A. Obobshhennyj prjamoj metod Ljapunova dlja sistem s raspredelennymi parametrami. M: URSS. 2007 (In Russian).
  23. Druzhinina O.V., Shestakov A.A. Obobshhennyj prjamoj metod Ljapunova issledovanija ustojchivosti i pritjazhenija v obshhih vremennyh sistemah. Matem. sb. 2002. T. 193. № 19. S. 17–48 (In Russian).
  24. Lisovskij E.V. Ob ustojchivosti sostojanija ravnovesija gidrodinamicheskoj modeli Bjurgersa. Mezhvuz. sb. nauchnyh trudov «Kolebanija, prochnost' i ustojchivost' dvizhenija v zadachah mehaniki transportnyh sistem». S.: RGOTUPS. 1998. S. 77–80 (In Russian).
Date of receipt: 26.07.2021
Approved after review: 11.08.2021
Accepted for publication: 24.08.2021