O.V. Druzhinina¹, E.R. Korepanov², V.V. Belousov³, O.N. Masina4, A.A. Petrov5
1−3 FRС «Computer Science and Control» of RAS (Moscow, Russia)
4,5 Bunin Yelets State University (Yelets, Russia)
The development of tools for solving research problems with the use of domestic software and hardware is an urgent direction. Such tasks include the tasks of neural network modeling of nonlinear controlled systems. The paper provides an extended analysis of the capabilities of the Elbrus architecture and the blocks of the built-in EML library for mathematical modeling of nonlinear systems. A comparative analysis of the instrumentation and efficiency of computational experiments is performed, taking into account the use of an 8-core processor and the potential capabilities of a 16-core processor. The specifics of the EML library blocks in relation to solving specific types of scientific problems is considered and the optimized software is analyzed. The design of generalized models of nonlinear systems with switching is proposed. For generalized models, a new switching algorithm has been developed that can be adapted to the Elbrus computing platform. An algorithmic tree is constructed, and algorithmic and software are developed for the study of models with switching. The results of adaptation of the modules of the software package for modeling managed systems to the elements of the platform are presented. The results of computer modeling of nonlinear systems based on the Elbrus 801-RS computing platform are systematized and generalized. The results can be used in problems of creating algorithmic and software for solving research modeling problems, in problems of synthesis and analysis of models of controlled technical systems with switching modes of operation, as well as in problems of neural network modeling and machine learning.
Druzhinina O.V., Korepanov E.R., Belousov V.V., Masina O.N., Petrov A.A. Development of the instrumental support of the domestic computing platform "Elbrus 801-PC" in the problems of neural network modeling of nonlinear dynamic systems. Nonlinear World. 2021. V. 19. № 1. 2021. P. 15−28. DOI: https://doi.org/10.18127/j20700970-202101-02 (In Russian)
- Al'fonso D.M., Demenko R.V., Kozhin A.S., Kozhin E.S., Kolychev R.E., Kostenko V.O., Poljakov N.Ju., Smirnova E.V., Smirnov D.A, Smol'janov P.A., Tihorskij V.V. Mikroarhitektura vos'mijadernogo universal'nogo mikroprocessora «Jel'brus-8C». Voprosy radiojelektroniki. 2016. T. 4. № 3. S. 6–13 (In Russian).
- MCST «Jel'brus». Rossijskie mikroprocessory i vychislitel'nye kompleksy [Jelektronnyj resurs]. URL= http://www.mcst.ru/ (data obrashhenija: 12.01.2020) (In Russian).
- Rabochaja stancija ««Jel'brus» 801-RS» [Jelektronnyj resurs]. URL= http://www.mcst.ru/elbrus_801-pc/ (data obrashhenija: 12.01.2020) (In Russian).
- Osnovnye principy arhitektury E2K [Jelektronnyj resurs]. URL= http://www.mcst.ru/e2k_arch.shtml (data obrashhenija: 12.01.2020) (In Russian).
- Rukovodstvo po jeffektivnomu programmirovaniju na platforme ««Jel'brus». [Jelektronnyj resurs] URL= http://www.mcst.ru/files/5ed39a/dd0cd8/50506b/000000/ elbrus_prog_2020-05-30.pdf (data obrashhenija: 12.01.2020) (In Russian).
- Ishin P.A., Loginov V.E., Vasil'ev P.P. Uskorenie vychislenij s ispol'zovaniem vysokoproizvoditel'nyh matematicheskih i mul'timedijnyh bibliotek dlja arhitektury «Jel'brus». Vestnik vozdushno-kosmicheskoj oborony. 2015. № 4(8). S. 64–68 (In Russian).
- Kozhin A.S., Nejman-zade M.I., Tihorskij V.V. Vlijanie podsistemy pamjati vos'mijadernogo mikroprocessora «Jel'brus-8C» na ego proizvoditel'nost'. Voprosy radiojelektroniki. 2017. № 3. S. 13–21 (In Russian).
- Kozhin A.S, Polyakov N.Yu., Alfonso D.M., Demenko R.V., Klishin P.A., Kozhin E.S., Slesarev M.V., Smirnova E.V., Smirnov D.A., Smolyanov P.A., Kostenko V.O., Gruzdov F.A., Tikhorskiy V.V., Sakhin Y.K. The 5th Generation 28 nm 8-Core VLIW «Elbrus-8C» Processor Architecture. Proceedings of the International Conference on Engineering and Telecommunication (EnT2016). Moscow, 2016. Р. 85–89.
- Sinicyn I.N., Druzhinina O.V., Belousov V.V., Masina O.N., Petrov A.A. Opyt razrabotki instrumental'no-metodicheskogo obespechenija dlja reshenija zadach modelirovanija upravljaemyh dinamicheskih sistem s primeneniem tehnologij mashinnogo obuchenija i otechestvennyh programmno-apparatnyh sredstv. Nelinejnyj mir. 2019. T.17. №4. S. 5—19 (In Russian).
- Druzhinina O.V., Korepanov Je.R., Belousov V.V., Masina O.N., Petrov A.A. Opyt razrabotki metodov i sredstv nejrosetevogo modelirovanija nelinejnyh sistem na baze otechestvennoj vychislitel'noj platformy ««Jel'brus 801-PC». Nelinejnyj mir. 2020. T. 18. № 2. S. 5–17 (In Russian).
- Liberzon D., Morse A.S. Basic problems in stability and design of switched systems. IEEE Control syst. 1999. V. 19. № 5. P. 59–70.
- Vasil'ev S.N., Malikov A.I. O nekotoryh rezul'tatah po ustojchivosti perekljuchaemyh i gibridnyh sistem. Aktual'nye problemy mehaniki sploshnoj sredy. Kazan': Foliant, 2011. T. 1. S. 23–81 (In Russian).
- Shpilevaja O.Ja., Kotov K.Ju. Perekljuchaemye sistemy: ustojchivost' i proektirovanie (obzor). Avtometrija. 2008. № 5. 44. S. 71−87 (In Russian).
- Petrov A.A. Struktura programmnogo kompleksa dlja modelirovanija tehnicheskih sistem v uslovijah perekljuchenija rezhimov raboty. Jelektromagnitnye volny i jelektronnye sistemy. 2018. T. 23. № 4. S. 61–64 (In Russian).
- Druzhinina O., Masina O., Petrov A. The synthesis of the switching systems optimal parameters search algorithms. Communications in Computer and Information Science. 2019. V. 974. P. 06–320.
- Druzhinin, O.V., Masina O.N., Petrov A.A., Lisovsky E.V., Lyudagovskaya M.A. Neural net-work optimization algorithms for controlled switching systems. Advances in Intelligent Systems and Computing. 2020. V. 1225. P. 470–483.
- Masina O.N. Voprosy upravlenija dvizheniem transportnyh sistem. Transport: nauka, tehnika, upravlenie. 2006 № 12 S. 10–12 (In Russian).
- Druzhinina O.V., Masina O.N., Petrov A.A. Razrabotka podhoda k resheniju zadach upravlenija dvizheniem tehnicheskih sistem, modeliruemyh differencial'nymi vkljuchenijami. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2017. T. 15. № 4. S. 64–72 (In Russian).
- Pinter J.D. Global optimization: software, test problems, and applications. Handbook of Global Optimization. Boston: Kluver, 2002. P. 515–569.
- Karpenko A.P. Sovremennye algoritmy poiskovoj optimizacii. M.: MGTU im. N.Je. Baumana. 2017. 447 s. (In Russian).
- Gazizov T.T. Metody global'noj optimizacii. Tomsk: V-Spektr. 2017. 24 s. (In Russian).
- Hajkin S. Nejronnye seti. M.: Vil'jams, 2016. 1104 s. (In Russian).
- Tarhov D.A. Nejrosetevye modeli i algoritmy. Spravochnik. M.: Radiotehnika. 2014. 352 s. (In Russian).
- Gudfellou Ja., Bendzhio I., Kurvill' A. Glubokoe obuchenie. M.: DMK-Press. 2017. 652 s. (In Russian).
- Kashirina I.A., Demchenko M.V. Issledovanie i sravnitel'nyj analiz metodov optimizacii, ispol'zuemyh pri obuchenii nejronnyh setej. Vestnik VGU. Ser. Sistemnyj analiz i informacionnye tehnologii. 2018. № 4. S. 123–132 (In Russian).
- Sinicyn I.N., Shalamov A.S., Korepanov Je.R., Belousov V.V., Titov Ju.P. Metodicheskoe i instrumental'noe programmnoe obespechenie modelirovanija processov v organizacionno-tehniko-jekonomicheskih sistemah massovogo primenenija. Sistemy vysokoj dostupnosti. 2017. T. 13. № 1. S. 65–90 (In Russian).
- Belousov V.V. Opyt razrabotki instrumentov dlja modelirovanija organizacionno-jekonomicheskih sistem vysokoj dostupnosti na baze otkrytogo programmnogo obespechenija. Sistemy vysokoj dostupnosti. 2018. T. 14. № 5. S. 3–11 (In Russian).
- Oliphant T.E. Python for Scientific Computing. Computing in Science and Engineering. 2007. V. 9. № 3. P. 10–20.
- Plas Dzh. V. Python dlja slozhnyh zadach. Nauka o dannyh i mashinnoe obuchenie. SPb: Piter. 2018. 576 s. (In Russian).
- Tjerano T., Asai K., Sugjeno M. Prikladnye nechetkie sistemy. M.: Mir. 1993. 368 s. (In Russian).
- Pegat A. Nechetkoe modelirovanie i upravlenie. M.: Binom. Laboratorija znanij. 2009. 798 s. (In Russian).
- Druzhinina O.V., Masina O.N. Metody analiza ustojchivosti dinamicheskih sistem intellektnogo upravlenija. M.: Izd. gruppa URSS. 2016. 248 s. (In Russian).