Journal Nonlinear World №1 for 2021 г.
Article in number:
Theoretical foundations of design optimization ship's control, decision-making systems and information processing
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202101-01
UDC: 621.396:523.6
Authors:

V.V. Sukhov, S.Kh. Ekshembiev, E.G. Andrianova, K.V. Gusev

Institute of Information Technology (Moscow, Russia)

Abstract:

Problem setting. The problems of optimizing the protection parameters of REA structures operating under complex mechanical influences, their diagnostics of quality, reliability and strength, as well as structural and parametric synthesis in the last decade are devoted to the work [1 9]. However, these works do not consider the issues of optimisation of vibration prote             ction parameters and strength of structures on the basis of determination of functional dependencies of forces against deformation and damping against deformation rate for vibration insulation systems and structural elements included in the instrument. The main results given in these works relate to the determination, at best, of resonant frequencies, which is insufficient to optimize vibration protection parameters and diagnose the reliability of devices.

The aim. Develop a methodological basis for the use of quality and durability control and diagnostics methods to improve the reliability of the operation of ship information and control systems in extreme operating conditions by optimizing their vibration protection.

Results. The basics of modeling the designs of radio-electronic equipment devices for various mechanical influencing factors are described. Description of models and mathematical peculiarities of organization of initial data for modeling is given. When comparing design stresses and allowable stresses, the strength of the product is determined. Allowable stresses are obtained using endurance curves for each material of the device design. Simulation of the panel instrument design under vibration impact is considered and processing of its results is presented. When creating a typical product operation model, the main operating modes and levels of external influencing factors and loads of each mode are determined. The example of the console instrument shows the procedure for modeling strength and determining the value of failure-free operation. It has been found that for a given console device the most complex effect is vibration, since it creates a multi-cycle loading of the structure, which affects the strength of the product as a whole.

Practical significance. The proposed approach to determination of structural strength makes it possible to find the number of loading cycles under vibration impact for each element and time operating time, as well as the calculated value of failure-free operation of the console device. This simulation can be performed at any stage of the instrument design.

Pages: 5-14
For citation

Sukhov V.V., Ekshembiev S.Kh., Andrianova E.G., Gusev K.V. Theoretical foundations of design optimization ship's control, decision-making systems and information processing. Nonlinear World. 2021. V. 19. № 1. 2021. P. 5−14.  DOI: https://doi.org/10.18127/j20700970-202101-01 (In Russian)

References
  1. Il'inskij V.S. Zashhita RJeA i precizionnogo oborudovanija ot dinamicheskih vozdejstvij. M.: Radio i svjaz'. 1982. 250 s. (In Russian).
  2. Karpushin V.B. Vibracii i udary v radioapparature. M.: Sovetskoe radio. 1971. 320 s. (In Russian).
  3. Ionov A.V. Sredstva snizhenija vibracii i shuma na sudah. SPb: GNC RF CNII im. akad. A.N.Krylova. 2000. 348 s. (In Russian).
  4. Tartakovskij A.M. Kraevye zadachi v konstruirovanii radiojelektronnoj apparatury. Saratov: Izd-vo Saratovskogo un-ta. 1984. 136 s. (In Russian).
  5. Biderman V.L. Teorija mehanicheskih kolebanij. M.: Vysshaja shkola. 408 s. (In Russian).
  6. Norenkov I.P. Avtomatizirovannye informacionnye sistemy. M.: Izd-vo MGTU im. N.Je. Baumana. 2011. 330 s. (In Russian).
  7. Furunzhiev R.I., Homich A.L. Avtomatizirovannoe proektirovanie kolebatel'nyh sistem. M.: Radio i svjaz'. 1977. 208 s. (In Russian).
  8. Makvecov E.N. Cifrovoe modelirovanie vibracij v radiokonstrukcijah. M.: Sovetskoe radio. 1976. 120 s. (In Russian).
  9. Bekishev A.T. Modelirovanie dinamicheskih harakteristik slozhnyh jelementov svjazi konstrukcij priborov. Tehnologii priborostroenija. 2004. № 1. 10 s. (In Russian).
  10. Suhov V.V., Ekshembiev S.H. Opredelenie nadezhnosti radiojelektronnoj apparatury na osnove modelirovanija prochnosti.  Radiotehnika. 2019. T. 83. № 11(17) (In Russian).
  11. Starkov S.N. Spravochnik po matematicheskim formulam i grafikam funkcij dlja studentov. SPb: Piter. 2010. 231 s. (In  Russian).
  12. Durakov B.K. Kratkij kurs vysshej algebry. M.: Fizmatlit. 2006. 252 s. (In Russian).
  13. Burmistrova E.B. Linejnaja algebra, differencial'nye ischislenija funkcij odnoj peremennoj. M.: Jekonomika. 2010. 336 s. (In Russian).
  14. Davtjan M.D., Konenkov Ju.K. Mehanicheskie modeli jelementov oborudovanija i apparatury. M.: Znanie. 1986. (In Russian).
  15. Kruglov Ju.A., Tumanov Ju.A. Udarovibrozashhita mashin oborudovanija i apparatury. L.: Mashinostroenie. 1986. (In Russian).
  16. DAEI.304242.006TU. Vibroizoljatory VCK. Tehnicheskie uslovija (In Russian).
  17. Suhov V.V., Annaeva M.S., Kiselevich V.P., Smirnov M.I., Salyga V.P. Osnovnye principy modelirovanija dolgovechnosti apparatury. Nauchno-tehnicheskij recenziruemyj sbornik AO «Koncern «Morinsis-Agat». 2018. Vyp. 14. SF-215. 49 s.  (In Russian).
  18. Patent na izobretenie № 2700799 ot 23.09.2019. Sposob opredelenija resursa korabel'noj radiojelektronnoj apparatury (In Russian).
Date of receipt: 22.01.2021
Approved after review: 12.02.2021
Accepted for publication: 03.03.2021