350 rub
Journal Nonlinear World №3 for 2017 г.
Article in number:
Application of the divergent method to the stability analysis of the nonlinear model of population dynamics
Authors:
E.D. Tarova - Post-graduate Student, Elets State University named after I.A. Bunin E-mail: katerina.tarova@yandex.ru
Abstract:
The work is devoted to the stability analysis of nonlinear model of population dynamics «predator-predator-prey-prey». Stability re-search is carried out by the divergent method. The sufficient conditions of uniform stability of equilibrium states are offered. The analysis of stability of the population model described by the nonlinear differential equations allows to study stability of the equilibrium states of systems on the basis of divergence properties of vector fields determined by the right parts of the corresponding equations. The results can be used at the solving of stability problems for ecological equations.
Pages: 59-64
References

 

  1. Bazykin A.D. Nelinejjnaja dinamika vzaimodejjstvujushhikh populjacijj. M. - Izhevsk: In-t kompjuternykh issledovanijj. 2003.
  2. Svirezhev JU.M., Logofet D.O. Ustojjchivost biologicheskikh soobshhestv. M.: Nauka. 1978.
  3. Pykh JU.A. Ravnovesie i ustojjchivost v modeljakh populjacionnojj dinamiki. M.: Nauka. 1983.
  4. Masina O.N., Druzhinina O.V. Sushhestvovanie ustojjchivykh sostojanijj ravnovesija i predelnye svojjstva reshenijj obobshhennykh sistem Lotki-Volterra // Vestnik Voronezh. gos. un-ta. Ser. Fizika. Matematika. 2007. № 1. S. 55-57.
  5. Druzhinina O.V., Masina O.N. Metody issledovanija ustojjchivosti i upravljaemosti nechetkikh i stokhasticheskikh dinamicheskikh sistem. M.: VC RAN. 2009.
  6. Druzhinina O.V. Indeksno-divergentnyjj metod issledovanija ustojjchivosti nelinejjnykh dinamicheskikh sistem. M.: VC RAN. 2007.
  7. SHestakov A.A., Stepanov A.N. Indeksnye i divergentnye priznaki ustojjchivosti osobojj tochki avtonomnojj sistemy differencialnykh uravnenijj // Differencialnye uravnenija. 1979. T. 18. № 4. S. 650-661.
  8.  Druzhinina O.V., Masina O. N. Issledovanie ustojjchivosti sistem populjacionnojj dinamiki s pomoshhju divergentnogo metoda // Nelinejjnyjj mir. 2016. T. 14. № 5. S. 53-60.
  9. Druzhinina O.V. Indeks, divergencija i funkcii Ljapunova v kachestvennojj teorii dinamicheskikh sistem. M.: Izd-vo URSS. 2013.
  10. Bratus A.S., Novozhilov A.S., Platonov A.P. Dinamicheskie sistemy i modeli biologii. M.: Draft. 2011.
  11. Parish J.D., Saila S.B. Interspecific competition, predation and species diversity // J. Theoret. Biol. 1970. V. 27. P. 207-220.
  12. Farkas M. On the stability of one-predator two-prey systems // Rocky Mountain J. of Math. 1990. V. 20. P. 909-916.
  13. Kirlinger G. Permanence in Lotka-Volterra Equations: Linked Prey-Predator Systems // Math. Biosci. 1986. V. 82. P. 165-191.
  14. Takeuchi Y., Adachi N. Influence of predation on species coexistence in Volterra models // Math. Biosci. 1984. V. 70. P. 65-90.
  15. Hsu S.B., Hubbell S. P. Two predators competing for two prey species: An analysis of MacArthur\'s model // Math. Biosci. 1979. V. 47. P. 143-171.