350 rub
Journal Nonlinear World №3 for 2017 г.
Article in number:
Dynamic of electrons in branching systems of gas-discharge channels with decreasing gas concentration
Authors:
I.R. Stakhovsky - Dr.Sc. (Phys.-Math.), Leading Research Scientist Institute of Physics of the Earth O.Yu. Schmidt of Russian Academy of Sciences E-mail: direction@ifz.ru
Abstract:
The term «earthquake nidus» signifies directly not observable source of rock macrofracture in Earth\'s bowel (a source of a seismic wave) but there is a great variety of opinions about what the nature of this source may be. The existing models of shallow earthquake nidus in spite of a formal diversity are united by common conceptual approach to the item of modeling: they interpret the original as a material system in which the rules of classic physics are valid and the metric is enounced in terms of Euclidian geometry. Meanwhile the experimental investigations of last decades educe the new fundamental feature of rocks which in principle can not be explicated in the framework of classic physics - scale invariance of disjunctive structures in rocks. This feature is the specific inherency of strong non-equilibrium dissipative systems which evolve far beyond the applicability limits of classic physics. Scale invariance can not be modeled by parametric correction of classic physics rules. The preparation of earthquake takes place in a strong non-equilibrium medium, so any model of earthquake nidus must proceed from this fact and straightforwardly take it into account. This paper contains a review of experimental and theoretical investigations of rock fracture which lead to the definition of shallow earthquake nidus in terms of fractal geometry. The concept of «geometrical phase transition» is introduced (geometrical phase transition - avalanche-like coalescence of microcracks distributed in space as scale invariant sets). The methods of modeling of realistic microcracks ensembles in Earth\'s bowel (with the help of multiplicative cascade procedure) are discussed. Today we have all the reasons to consider that macroruptures in lithosphere are formed in consequence of critical transitions in fractal sets (clusters) of microcracks. These microcracks appear as a result of intermolecular bond fracture due to energy fluctuations in crystal lattice of minerals. Fractal sets of microcracks can be defined as the dissipative structures of seismo-generating system or as the product of its self-organization. Key factors of macrorupture genesis in Earth\'s bowel (i.e. earthquakes) proved to be non-equilibrium state of medium and scale invariance of microcrack sets. The process of earthquake preparation is the process of microcrack accumulation up to achievement of the critical value of fractal dimension of microcrack set what leads to avalanche-like coalescence of microcracks (geometrical phase transition). The system producing earthquake nidus is i) - open, ii) - non-linear, iii) - non-equilibrium, iv) - self-organized, v) - scale-invariant. Thus we must define earthquake nidus as a fractal cluster of microcracks generated by thermodynamic entropy variations in seismo-generating system. This cluster accumulates microcracks during tectonic deformation up to the geometrical phase transition (earthquake). It can be said that the process of shallow earthquake preparation is clearly multifractal process.
Pages: 32-46
References

 

  1. Rebeckijj JU.L. Tektonicheskie naprjazhenija i prochnost prirodnykh massivov. M.: IKC Akademkniga. 2007. 406 s.
  2. Prigozhin I.R. Ot sushhestvujushhego k voznikajushhemu. M.: Editorial URSS. 2002. 288 s.
  3. Bak P., Tang C., Weiessenfeld K. Self-Organized Criticality // Phys. Rev. 1988. V. A38. № 1. P. 364-374.
  4. Bak P., Tang C. Earthquakes as Self-Organized Criticality // J. Geophys. Res. 1989. V. 94. № 15. P. 635-637.
  5. Mandelbrot B. Multifractal measures, especially for geophysicist // PAGEOPH. 1989. V. 131. № 1-2. P. 5-42.
  6. Schertzer D., Lovejoy S. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes // J. Geoph. Res. D. 1987. V. 92. № 8. P. 9693-9714.
  7. Frisch U., Parisi G. A multifractal model of intermittency // In book: Turbulence and predictability in geophysical fluid dynamics and climate dynamics. Amsterdam: North-Holland. 1985. P. 84-88.
  8. Grassberger P. Generalized dimensions of strange attractors // Phys. Rev. Lett. 1983. V. A97. P. 227-230.
  9. Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B. Fractal measures and their singularities: the characterization of strange sets // Phys. Rev. A., 1986. V. 33. № 2. P. 1141-1151.
  10. Radlinski A.P., Radlinska E.Z., Agamalian M., Wignall G.D., Lindner P., Randl O.G. The fractal microstructure of ancient sedimentary rocks // Journal of Applied Crystallography. 2000. V. 33. № 1. P. 860-862.
  11. Sen D., Mazumder S., Tarafdar S. Pore morphology and pore surface roughening in rocks: a small-angle neutron scattering investigation // Journal of Materials Science. 2002. V. 37. № 5. P. 941-947.
  12. Jouini M.S., Vega S., Mokhtar E.A. Multiscale characterization of pore spaces using multifractals analysis of scanning electronic microscopy images of carbonates // Nonlinear Processes in Geophysics. 2011. V.18. № 6. P. 941-953.
  13. Hirata T., Satoh T., Ito K. Fractal structure of spatial distribution of microfracturing in rocks // Geophys. J. R. Astr. Soc. 1987. V. 90. № 2. P. 369-374.
  14. Johansen A., Sornette D. Critical ruptures // Eur. Phys. J. 2000. V. B18. P. 163-181.
  15. Turcotte D.L., Newman W.L., Shcherbakov R. Micro and macroscopic models of rock fracture // Geophys. J. Int. 2003. V. 152. № 3. P. 718-728.
  16. Sammis C.G., Biegel R.L. Fractals, fault-gouge and friction // In book: Fractals in Geophysics. Basel, Boston, Berlin: Kluwer Academic Publishers. 1989. P. 255-271.
  17. Badri A., Touchard G., Velde B., Sahel A., Borzeix J. Image processing software for fractal analysis of fractures in rocks // Acta Stereol. 1994. V. 13. № 1. P. 183-188.
  18. Stakhovsky I.R. Multifractal analysis of fault structures in basement rocks // In book: Basement Tectonics 11. Europe and Other Regions. 1996, Dordrecht, Boston, London: Kluwer Academic Publishers. P. 101-110.
  19. Ouillon G., Castaing C., Sornette D. Hierarchical geometry of faulting // J. Geophys. Res. 1996. V. 101. B3. P. 5477-5487.
  20. Sadovskijj M.A., Pisarenko V.F. Sejjsmicheskijj process v blokovojj srede. M.: Nauka. 1991. 96 s.
  21. Hooge C., Lovejoy S., Pecknold S., Malouin J.F., Schertzer D. Universal multifractals in seismicity // Fractals. 1994. V. 2. № 3. P. 445-449.
  22. ZHurkov S.N., Kuksenko V.S, Petrov V.A., Savelev V.N., Sultanov U.S. Koncentracionnyjj kriterijj obemnogo razrushenija tverdykh tel // V kn.: Fizicheskie processy v ochagakh zemletrjasenijj. M.: Nauka. 1980. S. 78-86.
  23. Sobolev G.A., Kolcov A.V. Krupnomasshtabnoe modelirovanie podgotovki i predvestnikov zemletrjasenijj. M.: Nauka. 1988. 206 s.
  24. Stakhovskijj I.R. Masshtabnaja invariantnost korovojj sejjsmichnosti i prognosticheskie priznaki zemletrjasenijj // UFN, 2017. DOI 10.3367/UFNr.2016.09.037970.
  25. Zhurkov S.N. Kinetic concept of strength of solids // Int. J. Fracture Mech. 1965. V. 1. P. 311-323.
  26. Kuksenko V.S. Diagnostika i prognozirovanie razrushenija krupnomasshtabnykh obektov // Fizika tverdogo tela. 2005. T. 47. Vyp. 5. S. 788-792.
  27. Gilman J.J., Tong H.C. Quantum tunneling as elementary fracture process // J. Appl. Phys. 1971. V. 42. № 9. P. 3479-3486.
  28. Bykova V.V., Derjagin B.V., Stakhovskijj I.R., Toporov JU.P., Fedorova T.S., KHrustalev JU.A. EHlektronnaja ehmissija pri razrushenii gornykh porod // Izv. AN SSSR. Fizika Zemli. 1987. № 8. S. 87-90.
  29. Kolmogorov A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number // J. Fluid Mech. 1962. V. 13. P. 82-85.
  30. Obukhov A. Some specific features of atmospheric turbulence // J. Geophys. Res. 1962. V. 67. P. 3011-3014.
  31. Stakhovskijj I.R. Samopodobnaja sejjsmogenerirujushhaja struktura zemnojj kory: obzor problemy i matematicheskaja model // Fizika Zemli. 2007. № 12. S. 35-47.
  32. Stakhovskijj I.R. Modelirovanie agregacii treshhin v neravnovesnojj srede // Matematicheskoe modelirovanie. 1995. T. 7. № 6. S. 54-64.
  33. Buchachenko A.L. Magnitoplastichnost i fizika zemletrjasenijj. Mozhno li predotvratit katastrofu? // UFN. 2014. T. 184. № 1. S. 101-108.