350 rub
Journal Nonlinear World №7 for 2016 г.
Article in number:
Exponential stability for nonstationary linear approach of nonlinear systems with distributed parameters
Authors:
O.V. Druzhinina - Dr.Sc. (Phys.-Math.), Professor, Chief Research Scientist, FRC «Computer Science and Control» of RAS (Mocsow) E-mail: ovdruzh@mail.ru E.V. Lisovsky - Ph.D. (Phys.-Math.), Associate Professor, Kaluga Branch of the Bauman MSTU E-mail: levgenijv@gmail.com V.L Vorontsova - Ph.D. (Phys.-Math.), Associate Professor, N.I. Lobachevsky Institute of Mathematics and Mechanics of the Kazan Federal University E-mail: VLVorontsova@yandex.ru
Abstract:
The method of modeling of the distributed systems by means of abstract dynamic systems in infinite-dimensional phase space is de-veloped in the paper. The approach to research of stability of models with the distributed parameters is offered on the basis of this method and Lyapunov methods of stability analysis. The problem of exponential stability of equilibrium state on non-stationary linear approach is studied taking into account properties of unboundedness and dissipativity of the operator of linear approach. Application to research of properties of oscillator model with infinite number of degrees of freedom is considered. The obtained results can be used for solving of stability problems of programmed motion and for modeling of technical systems with distributed parameters taking into account requirements of stability.
Pages: 47-54
References

 

  1. Daleckijj JU.L., Krejjn M.G. Ustojjchivost reshenijj differencialnykh uravnenijj v banakhovom prostranstve. M.: Nauka. 1970.
  2. Krejjn S.G., KHazan M.I. Differencialnye uravnenija v banakhovom prostranstve. Itogi nauki i tekhniki. Matematicheskijj analiz. M.: VINITI. 1983. T. 21. S. 30-264.
  3. Valeev K.G., ZHautykov O.A. Beskonechnye sistemy differencialnykh uravnenijj. Alma-Ata: Nauka. 1974.
  4. Datko R. An extension of a theory Lyapunov to semigroups of operators // T. Math. Anal. And Appl. 1968. V. 24. P. 290-295.
  5. Pao C.V., Vogt W.G. On stability of nonlinear operator differential equations and applications // Arch. Ration. Mech. Analysis. 1969. № 35. P. 30-46.
  6. Pazy A. Semigroups of operators in Banach space // Lecture notes in math. 1983. V. 1017. P. 508-527.
  7. SHestakov A.A. Obobshhennyjj prjamojj metod Ljapunova dlja sistem s raspredelennymi parametrami. Izd. 2-e, dop. M.: URSS. 2007.
  8. Iosida K. Funkcionalnyjj analiz. M.: Mir. 1967.
  9. Sirazetdinov T.K. Ustojjchivost sistem s raspredelennymi parametrami. Novosibirsk: Nauka. 1987.
  10. Druzhinina O.V., SHestakov A.A. Obobshhennyjj prjamojj metod Ljapunova issledovanija ustojjchivosti i pritjazhenija v obshhikh vremennykh sistemakh // Matematicheskijj sbornik. 2002. T. 193. № 10. S. 17-48.
  11. SHestakov A.A., Druzhinina O.V. Metod funkcijj Ljapunova issledovanija dissipativnykh avtonomnykh dinamicheskikh processov // Differencialnye uravnenija. 2009. T. 45. № 8. S. 1108-1115.
  12. SHestakov A.A., Lisovskijj E.V. Ob ustojjchivosti linejjnykh differencialnykh uravnenijj s neogranichennym operatorom v gilbertovom prostranstve // Mezhvuz. sb. nauch. trudov «Sovremennye problemy upravlenija, ustojjchivosti i kolebanijj nelinejjnykh mekhanicheskikh sistem zheleznodorozhnogo transporta». V 2-kh ch. M.: VZIIT. 1991. CH. 1. S. 49-54.
  13. Fomin V.N. Parametricheskijj rezonans uprugikh sistem s beskonechnym chislom stepenejj svobody // Vestnik LGU. Ser. Matematika, mekhanika, astronomija. 1965. № 13. Vyp. 3. S. 73-87 (CH. I); 1965. № 19. Vyp. 4. S. 74-86 (CH. II).
  14. Fomin V.N. Oblasti dinamicheskojj neustojjchivosti parametricheski vozbuzhdaemykh sistem s beskonechnym chislom stepenejj svobody // Problemy matematicheskogo analiza. L.: Izd-vo LGU. 1966. S. 135-165.
  15. Vilke V.G. Analiticheskie i kachestvennye metody mekhaniki s beskonechnym chislom stepenejj svobody. M.: Izd-vo MGU. 1986.
  16. Galiullin A.C. Ustojjchivost dvizhenija. M.: Izd-vo UDN. 1973.
  17. Galiullin A.C. Metody reshenija obratnykh zadach dinamiki. M.: Nauka. 1986.
  18. Galiullin A.S., Mukhametzjanov I.A., Mukharljamov R.G., Furasov V.D. Postroenie sistem programmnogo dvizhenija. M.: Nauka. 1971.
  19. Mukhametzjanov I.A. Ob ustojjchivosti programmnogo mnogoobrazija // Differencialnye uravnenija. 1973. T. 9. № 5. S. 846-856 (ch. I); 1973. T. 9. № 6. S. 1038-1048 (ch. II).
  20. Mukhametzjanov I. A., Mukharljamov R.G. Uravnenija programmnykh dvizhenijj. M.: Izd-vo UDN. 1986.
  21. Bagshyev A.A. Postroenie uravnenijj ustojjchivogo programmnogo dvizhenija mekhanicheskikh sistem s beskonechnym chislom stepenejj svobody: Diss. ... kand. fiz.-mat. nauk. M.: Izd-vo RUDN. 1994.
  22. Lisovskijj E.V. Ob ustojjchivosti programmnogo dvizhenija sistem s raspredelennymi parametrami // Mezhvuz. sb. nauchn. trudov «Ustojjchivost, prochnost i nadezhnost sistem podvizhnogo sostava zheleznodorozhnogo transporta». M.: RGOTUPS. 1999. S. 16-19.
  23. Lisovskijj E.V. Postroenie uravnenijj programmnogo dvizhenija i analiz ustojjchivopodobnykh svojjstv reshenijj // Vestnik Rossijjskojj akademii estestvennykh nauk // Differencialnye uravnenija. 2015. T. 15. № 3. S. 78-84.
  24. Lisovskijj E.V. Voprosy ustojjchivosti programmnogo dvizhenija nelinejjnykh dinamicheskikh sistem // Nelinejjnyjj mir. 2015. T. 13. № 5. S. 54-58.