350 rub
Journal Nonlinear World №6 for 2016 г.
Article in number:
Structure and the qualitative analysis of mathematical models of populations dynamics in the presence of mutualism
Authors:
O.V. Druzhinina - Dr.Sc. (Phys.-Math.), Professor, Chief Research Scientist, FRC «Computer Science and Control» of RAS (Mocsow). E-mail: ovdruzh@mail.ru O.N. Masina - Dr.Sc. (Phys.-Math.), Head of of Department Mathematical Modeling and Computer Technologies, Yelets State University named after I.A. Bunin. E-mail: olga121@inbox.ru A.V. Shcherbakov - Post-graduate Student, Department Mathematical Modeling and Computer Technologies, Yelets State University named after I.A. Bunin. E-mail: shcherbakov_al.vl@mail.ru
Abstract:
The structure is described, systematization is carried out and the review of results of research of two-dimensional, three-dimensional and four-dimensional models of dynamics of populations with the mutualism relations is given. Qualitative analysis of the model which describes the interaction between a predator, the prey and a mutualist is made and also the model which is characterized by existence of two species-competitors interacting among themselves, each of which interacts also with a species-mutualist is considered. The equilibrium states are founded, the stability analysis is made and the appropriate phase portraits are constructed. Transition from the nonlinear multidimensional differential equations describing models of population dynamics to vectorial differential inclusion, and to fuzzy and stochastic differential equations is considered. The comparative analysis of properties of models is performed by means of the principle of reduction. The obtained results can be used in the solving of problems of construction and stability analysis of nondeterministic models of nonlinear dynamics.
Pages: 32-42
References

 

  1. Dean A.M. A simple model of mutualism // Am. Nat. 1983. V. 121. P. 409-417.
  2. Kumar R., Freedman H.I. A mathematical model of facultative mutualism with populations interacting in a food chain // Math. Biosci. 1989. V. 97. 235-261.
  3. Freedman H.I., Rai B. Uniform persistence and global stability in models involving mutualism Competitor-competitor-mutualist systems // Indian J. Math. 1988. V. 30. P. 175-186.
  4. Rai B., Freedman H.I., Addicott J.F. Analysis of three species models of mutualism in predator-prey and competitive systems // Math. Biosci. 1983. № 63. S. 13-50.
  5. Freedman H. I., Rai B. Can mutualism alter competitive outcome: a mathematical analysis // Rocky Mountain. 1995. V. 25. № 1. P. 217-230.
  6. Addicott J.F. Stability properties of 2-species models of mutualism: simulation studies // Oecologia. 1981. V. 49. P. 42-49.
  7. Freedman H.I., Addicott J.F., Rai B. Nonobligate and obligate models of mutualism, in population biology proceedings // Springer-Verlag Lecture Notes in Biomathematics. 1983. V. 52. R. 349-354.
  8. Bazykin A.D. Nelinejjnaja dinamika vzaimodejjstvujushhikh populjacijj. Moskva-Izhevsk: In-t kompjuternykh issledovanijj, 2003.
  9. Masina O.N., SHHerbakov A.V. Analiz ustojjchivosti modeli vzaimodejjstvija dvukh konkurirujushhikh osobejj s uchetom simbioza // Materialy Mezhdunar. nauchno-praktich. Konf. «Sistemy upravlenija, tekhnicheskie sistemy: ustojjchivost, stabilizacija, puti i metody issledovanija», posvjashhennojj 95-letiju so dnja rozhdenija professora A.A. SHestakova (Elec, 2─3 aprelja 2015 g.). Elec: EGU im. I.A. Bunina. 2015. S. 93-97.
  10. Merenkov JU.N. Ustojjchivopodobnye svojjstva differencialnykh vkljuchenijj, nechetkikh i stokhasticheskikh differencialnykh uravnenijj. M.: Izd-vo RUDN. 2000.
  11. SHestakov A.A. Obobshhennyjj prjamojj metod Ljapunova dlja sistem s raspredelennymi parametrami. M.: URSS. 2007.
  12. Druzhinina O.V., Masina O.N. Metody issledovanija ustojjchivosti i upravljaemosti nechetkikh i stokhasticheskikh dinamicheskikh sistem. M.: VC RAN. 2009.
  13. Druzhinina O.V., Masina O.N. Issledovanie sushhestvovanija i ustojjchivosti reshenijj differencialnojj sistemy ehkologicheskojj dinamiki s uchetom konkurencii i diffuzii // Nelinejjnyjj mir. 2009. T. 7. № 11. S. 881-888.
  14. Demidova A.V., Druzhinina O.V., Masina O.N. Issledovanie ustojjchivosti modeli populjacionnojj dinamiki na osnove postroenija stokhasticheskikh samosoglasovannykh modelejj i principa redukcii // Vestnik RUDN. Ser. Matematika. Informatika. Fizika. 2015. № 3. S. 18-29.
  15. Druzhinina O.V., Masina O.N. Uslovija ustojjchivosti modeli dinamiki populjacijj na osnove determinirovannogo i stokhasticheskogo podkhodov // Materialy Vseross. Konf. s mezhdunar. uchastiem «Informacionno-telekommunikacionnye tekhnologii i matematicheskoe modelirovanie vysokotekhnologichnykh sistem» (Moskva, RUDN, 18-22 aprelja 2016 g.). M.: RUDN. 2016. S. 267-270.
  16. Druzhinina O.V., Masina O.N. Sistemnyjj podkhod k issledovaniju ustojjchivosti modelejj, opisyvaemykh differencialnymi uravnenijami razlichnykh tipov // Vestnik Rossijjskojj akademii estestvennykh nauk. Ser. Differencialnye uravnenija. 2015. T. 15. № 3. S. 24-30.