350 rub
Journal Nonlinear World №5 for 2016 г.
Article in number:
Methods of nonlinear dynamics and minimax approximation criterion in the analysis of population dynamics
Authors:
V.A. Krysko - Dr.Sc. (Eng.), Professor, Head of Department of Mathematics and modeling, Saratov State Technical University named after Gagarin Yu.A. Е-mail: tak@sun.ru I.Yu. Vygodchikova - Ph.D. (Phys.-Math.), Associate Professor, Department of Mathematical Economics, Saratov State University named after N.I. Chernyshevskii. Е-mail: irinavigod@yandex.ru I.R. Pleve  Dr.Sc. (Hist.), Professor, Chancellor, Saratov State Technical University after Gagarin Yu.A. Е-mail: rectorat@sstu.ru T.Yu. Yaroshenko - Ph.D. (Eng.), Associate Professor, Department of Mathematics and modeling, Saratov State Technical University named after Gagarin Yu.A. Е-mail: tyyaroshenko@gmail.com
Abstract:
The work is dedicated to continuing the development of new approaches including mathematical and algorithmic support of the presentation toolkits analysis of dynamics of development of the states using a key indicator of population. Studies of population fluctuations are highly relevant in terms of current trends of development as the humanity as a whole and individual countries in particular. Changing population such as the formation of the European Union, which includes most of the European countries with developed economies can identify some general patterns of human population growth as a whole. The paper deals with quantitative analysis of time series over a long time interval. The authors propose a set of complementary and mathematically sound methods for assessment of dynamic trends for the purpose of data compression and prediction of missing values in the sample. Use economic statistics (population). Applied discrete wavelet transform Haar, research mark the first four Lyapunov exponents trained artificial neural network, and the approximation based on PL task Chebyshev. The article continues to develop new approaches, including mathematical and algorithmic support of the presentation toolkits analysis of dynamics of development of the states using a key indicator of population. The analysis of study results achieved possibility of a strong data compression without loss of significant information content (up to three sample values, or, equivalently, two coefficients approximating polynomial) obtained sample as a result of complex analysis, the use of which for a variety of methods gave more successful predictions than the use of the same sample by the same methods.
Pages: 64-73
References

 

  1. Kapica S.P. Obshhaja teorija rosta chelovechestva. M.: Nauka. 1999.
  2. Turchin P. Long-term population cycles in human societies. Pages 1-17 in R.S. Ostfeld and W.H. Schlesinger, editors. The Year in Ecology and Conservation Biology. 2009. Ann. N. Y. Acad. Sci. 1162.
  3. Bacajor N. A Short History Mathematical Population Dynamics. DOI 10.1007/978-0-85729-115-8. Springer-Verlag London Limited. 2011.
  4. Aleshkovski I., Iontsev V. Mathematical Models of Migration // Systems Analysis and Modeling of Integrated World Systems, from Encyclopedia of Life Support Sys- tems (EOLSS), Developed under the Auspices of the UNESCO. EOLSS Publishers. Oxford, UK. 2005 [http://www.eolss.net].
  5. Dubovikov M.M., Starchenko N.S. Variation index and its applications to analysis of fractal structures // Sci. Almanac Gordon, 2003. № 1. R. 1-30.
  6. Malineckijj G.G., Potapov A.V., Podlazov A.V. Nelinejjnaja dinamika. Podkhody, rezultaty, nadezhdy. M.: KomKniga. 2006.
  7. Dacorogna M.M., Gencay R., MGuller U.A., Olsen R.B., Pictet O.V. An Introduction to High-Frequency Finance. San Diego: Academic Press. 2001.
  8. Starchenko N.V. Lokalnyjj analiz khaoticheskikh vremennykh rjadov s pomoshhju indeksa fraktalnosti: Avtoreferat diss. - kand. fiz.-mat. nauk. M. 2005.
  9. CHebyshev P.L. Sobranie sochinenijj / Red.-sost. A.O. Gelfond. M.: Akademija nauk SSSR. 1955.
  10. Vygodchikova I.JU. EHkonometricheskijj analiz proizvodstvennykh funkcijj (metodika prepodavanija) // Socialno-ehkonomicheskoe razvitie Rossii: problemy, poiski, reshenija: Sb. nauch. trudov po itogam nauchno-issl. raboty SGSEHU v 2009 g. CH. 1. Saratov: SGSEHU. 2010. S. 111.
  11. Vygodchikova I.JU. O metode approksimacii mnogoznachnogo otobrazhenija algebraicheskim polinomom // Vestnik SGTU. Ser. Matematika i mekhanika. 2013. Vyp. № 2(70). C. 7-12.
  12. Demjanov V.F., Malozemov V.N. Vvedenie v minimaks. M.: Nauka. 1972.
  13. Krysko V.A., Awrejcewicz J., Kutepov I.E., Vygodchikova I.Yu., Krysko A.V. Quantifying chaos of curvilinear beam via exponents // Communications in Non-linear Science and Numerical Simulation. October 2015. V. 27. Is. 1-3. P. 81-92.
  14. Vygodchikova I.JU. Ob approksimacii mnogoznachnogo otobrazhenija algebraicheskim polinomom s ogranichenijami // Izvestija VUZov. Ser. Matematika. 2015. №2. S. 30-34.
  15. Awrejcewicz J., Krysko A.V., Papkova I.V., Vygodchikova I.Y., Krysko V.A. On the methods of critical load estimation of spherical circle axially symmetrical shells. Thin-Walled Structures. (Sc,WoS) (v pechati).
  16. Boks Dzh., Dzhenkins G. Analiz vremennykh rjadov. Prognoz i upravlenie / per. s angl. 1974. Vyp. 1-2.
  17. Lyapunov A.M. Works. V. 2. Moskow. A.S. USSR. 1956. R. 7-263.
  18. Benettin G., Galgani L., Strelcyn J.M. Kolmogorov entropy and numerical experiments // Phys. Rev. 1976. V. A14. P. 2338-2345.
  19. Stoop R., Meier P.F. Evaluation of Lyapunov exponents and scaling functions from time series // Journal of the Optical Society of America B. 1988. № 5(5). R. 1037.
  20. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series // Physica. 1985. V. D16. P. 285-317.
  21. Yaroshenko T.Y., Krysko D.V., Dobriyan V., Zhigalova M.V., Vos H., Vandenabeele P., Krysko V.A. Wavelet modeling and prediction of the stability of states: the Roman Empire and the European Union // Communications in Nonlinear Science and Numerical Simulation. 2015. № 26. R. 1-11.
  22. Dobeshi I. Desjat lekcijj po vejjvletam. Izhevsk. 2001. 464 s.
  23. Awrejcewicz J., Krysko V.A., Papkova I.V., Krysko A.V. Routes to chaos in continuous mechanical systems. Part 1: Mathematical models and solution methods // Chaos Solitons & Fractals. 2012. № 45. R. 687-708.
  24. Astafeva N.M. Vejjvlet-analiz: Osnovy teorii i primery primenenija // Uspekhi fizicheskikh nauk. 1996. T 166. № 11. S. 1145-1170.
  25. Djakonov V., Abramenkova I. MATLAB. Obrabotka signalov i izobrazhenijj. Specialnyjj spravochnik. SPb.: Piter. 2002. 608 s.
  26. Tokens F. Detecting strange attractors In turbulence / In: Dynamical Systems and Turbulence. Lect. Notes in Math. V. 898. Eds. D. A. Rand, L. S. Young. Berlin: Springer. 1981. P. 336-381.
  27. Istomin I.A., Kotljarov O.L., Loskutov A.JU. K probleme obrabotki vremennykh rjadov: rasshirenie vozmozhnostejj metoda lokalnojj approksimacii posredstvom singuljarnogo spektralnogo analiza // Teoreticheskaja i matematicheskaja fizika. 2005. № 1. T. 142. S. 148-159.
  28. Krysko V.A., Awrejcewicz J., Kutepov I.E., Vygodchikova I.Yu., Krysko A.V. Quantifying chaos of curvilinear beam via exponents // Communications in Non-linear Science and Numerical Simulation. October 2015. V. 27. Iss. 1-3. P. 81-92.
  29. Haar A. Zur theorie der orthogonalen funktionensysteme // Math. Ann. 1911. № 71. R. 38-53.