350 rub
Journal Nonlinear World №4 for 2016 г.
Article in number:
Differential diagnostics of pathophysiological conditions of the digestive tract with use chaotic characteristics of elektrogastroenterogramma
Keywords:
elektrogastroenterogramma
dynamic chaos
fractal dimension
fractality index
local fractal characteristics of a temporary row
Authors:
N.T. Abdullaev - Ph.D. (Eng.), Associate Professor, Department of Biomedical Technics,
Azerbaijan Technical University (Baku). E-mail: a.namik46@mail.ru
O.A. Dyshin - Ph.D. (Phys.-Math.), Senior Research Scientist, Scientific Research Institute of Geotechnological Problems of Oil, Gas and Chemistry, Azerbaijan State University Oil and Industry (Baku)
M.I. Kerimova - Assistant, Department of Metrology and Standardization, Azerbaijan State University Oil and Industry (Baku)
Abstract:
Elektrogastroenterografiya - a method of research motor эвакуаторной functions of a digestive tract by means of registration of biocapacities of its various departments. By means of this noninvasive method the functional condition of a stomach and duodenum is defined. The method of differential diagnostics of a condition of a digestive tract with use of chaotic characteristics электрогастро-энтерограмм is considered. The digitized values of an elektrogastroenetrogramma are presented in the form of a temporary row for three types of signals - norm, stomach ulcer, a duodenum ulcer. Procedure of diagnostics is based on a nonparametric method of the solution of a task on a signal razladka with application of iterative algorithm of the cumulative sums of squares. After a trend exception in initial signals a new time row was divided into not crossed segments of equal length. As informative diagnostic parameters the moments of emergence and change-points value of a temporary row are chosen.
Calculations were repeated on several patients with the specified diagnostic inferences, confirmed with earlier endoscopic and radiological inspections. Average values of the received informative parameters can be used for differential diagnostics of bodies of a digestive tract.
Pages: 67-75
References
- Modeli i algoritmy obrabotki ehlektrogastroehnterograficheskogo signala [EHlektronnyjj resurs: http://masters.donntu. edu.ua /2009/ kita/boutiti]diss/index.html
- Novickijj P.V., Zograf I.A. Ocenka pogreshnosti rezultatov izmerenijj. L.: EHnergoatomizdat. 1991. 304 s.
- SHuster G. Determinirovannyjj khaos: Vvedenie / Per. s angl. M.: Mir. 1988. 240 s.
- Anishhenko V.S., Vadivasova T.E., Astakhov V.V. Nelinejjnaja dinamika khaoticheskikh i stokhasticheskikh sistem. Fundamentalnye osnovy i izbrannye problemy / Pod red. V.S. Anishhenko. Saratov: Izd-vo Sarat. un-ta. 1999. 368 s.
- Kronover R.M. Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii / Per. s angl. M.: Postmarket. 2000. 352 s.
- Klikushin JU.N. Kolichestvennaja ocenka svojjstv «reguljarnosti-khaotichnosti» signalov // ZHurnal radioehlektroniki. 2006. № 4. S. 1-8.
- Gorshenkov A.A., Klikushin JU.N. Metody ocenki khaosa signalov // Polzunovskijj vestnik. 2011. № 3/1. S. 30-33.
- Pajjtgen KH.-O., Rikhter P.KH. Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem / Per. s angl. M.: Mir. 1993. 176 s.
- Hutchinson J.E. Fractals and Self Similarity // Indiana University Mathematics Journal. 1981 V. 30. № 5. R. 713-747.
- Barnsley M. Fractals Everywhere. Boston: Academic Press. 1993. 533 p.
- Hausdorff F. Dimension and Ausseres Mass // Matematishe Annalen. 1919. № 79. R. 157-179.
- Grassberger P., Procaccia I. Characterization of Strange Attractors // Phys. Rev. Lett. 1983. № 50. R. 346-349.
- Feder E. Fraktaly. M.: Mir. 1991. 254 s.
- Starchenko N.V. Indeks fraktalnosti i lokalnyjj analiz khaoticheskikh vremennykh rjadov: dis. kand. fiz.-mat. nauk: M. 2005 [EHlektronnyjj resurs]. Rezhim dostupa: http:// www.mirkin.ru/docs/kon_diser/diserstarchenko.pdf.
- SHirjaev A.N. Statisticheskijj posledovatelnyjj analiz. M.: Nauka. 1976, 272 s.
- Krishnaiah P., Miao B. Review about estimation of change-points // Handbook of Statistics. 1988. V. 7. R. 375-402.
- Change-point Problems / Ed. E.Carlstein, H.-G. Muller and D. Siegmund. Institute of Mathematical Statistics, Harvard, California. 1994. V. 23. 385 p.
- Darkhovski B.S. Nonparametric methods in change-point problems a general approach and some concrete algoritms // TMS Lecture Notes. Monograph Series. 1994. V. 23. R. 101-107.
- Chong T.T-L. Estimating the locations and number of change-points by the sample-splitting method // Statistical Papers. 2001. V. 42. R. 53-79
- Inclan C., Tiao G. Use of Cumulative Suns of Squares for Retrospective Detection of Changes of Variance // Journal if the American Statistical Association. Sept. 1994. V. 89. № 427. R. 913-923.
- Chen G., Chou Y.K., Zhou Y. Nonparametric estimation of structural change points in volatility models for time series // Journal of Econometrics. 2005. V. 126. R. 79-114.
- Kantelhardt J.W., Zschiegner S.A., Bunde A., Havlin S., Koscielny-Bunde E., Stanley H.E. Multifractal detrended fluctuation analysis of nonstationary time series // Physica A. 2002. V. 87. 316 p.
- Savitzky A., Golay M.J.E. // Anal chem. 1984. № 36. R. 1627-1639.
- Billingsley P. Convergence of Probability Measures. New York: John Wiley. 1999. 296 p.