350 rub
Journal Nonlinear World №3 for 2016 г.
Article in number:
On a family of quasi-invariant measures and related representations of a diffeomorphisms group
Keywords:
quasi-invariant measures
Wiener measure
Ito stochastic integral
unitary representations of diffeomorphisms group
Authors:
E.D. Romanov - Post-graduate Student, Department of Mathematical Analysis, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University. E-mail: romanoved@yandex.ru
Abstract:
A family of quasi-invariant measures on the special functional space of curves with respect to the action of diffeomorphisms is constructed. An explicit expression for the Radon-Nikodym derivative of the transformed measure relative to the original one is presented. The stochastic Ito integral allows to express the result in an invariant form for a wider class of diffeomorphisms and to simplify calculations related with unitary representation. A general structure of the unitary representations based on such quasi-invariant measure described. The irreducibility proved in the case of the special measure choice. A geometric interpretation of the action considered together with a generalization to the multidimensional case makes such representations applicable to problems of quantum mechanics.
Pages: 32-39
References
- Presli A., Sigal G. Gruppy petel. M.: Mir. 1990.
- Ismagilov R.S. Ob unitarnykh predstavlenijakh gruppy diffeomorfizmov okruzhnosti // Funkcionalnyjj analiz. 1971. T. 5. № 3. S. 45-53.
- Vershik A.M., Gelfand I.M., Graev M.I. Predstavlenija gruppy diffeomorfizmov // UMN. 1975. T. 30. № 6. S. 3-50.
- SHavgulidze E.T. Odin primer mery, kvaziinvariantnojj otnositelno dejjstvija gruppy diffeomorfizmov okruzhnosti // Funkcionalnyjj analiz i ego prilozhenija. 1978. T. 12. № 3. S. 55-60.
- SHavgulidze E.T. Ob odnojj mere, kvaziinvariantnojj otnositelno dejjstvija gruppy diffeomorfizmov konechnomernogo mnogoobrazija // Dokl. AN SSSR. 1988. T. 303. № 4. S. 811-814.
- Shavgulidze E.T. Some Properties of Quasi-Invariant Measures on Groups of Diffeomorphisms of the Circle // Russian Journal of Mathematical Physics. 2000. V. 7. № 4. R. 464-472.
- Dosovitskii A.A. Quasi-invariant measures on sets of piecewise smooth homeomorphisms of closed intervals and circles and representations of diffeomorphism groups // Russ. J. Math. Phys. 2011. V. 18. № 3. R. 258-296.
- Agrachev A.A., Gamkrelidze R.V. EHksponencialnoe predstavlenie potokov i khronologicheskoe ischislenie // Matematicheskijj sbrnik. 1978. T. 107. № 149. S. 468-532.
- Oksendal B. Stokhasticheskie differencialnye uravnenija. Vvedenie v teoriju i prilozhenija / Per. s angl. M.: AST. 2003.
- Go KH.-S. Gaussovskie mery v banakhovykh prostranstvakh. M.: Mir. 1979.
- Bernshtejjn S.N. O zakone bolshikh chisel // Soobshhenija KHarkovskogo matematicheskogo obshhestva. 1918. Cer. 2. № 16. S. 82-87.
- Cameron R.H., Graves R.E. Additive functionals on a space of continuous functions // I. Trans. Amer. Math. Soc. 1951. №70. R. 160-176.