350 rub
Journal Nonlinear World №6 for 2015 г.
Article in number:
Conditions of coordinate synchronization of nonlinear dynamic systems concerning a part of phase variables
Authors:
O.V. Druzhinina - Dr.Sc. (Phys.-Math.), Professor, Chief Researcher, Federal Research Center «Informatics and Management» of the Russian Academy of Sciences. E-mail: ovdruzh@mail.ru E.V. Shchennikova - Dr.Sc. (Phys.-Math.), Professor, National Research Mordovia State University named after N.P. Ogarev. E-mail: schennikova8000@yandex.ru
Abstract:
The problem of coordinate synchronization of nonlinear dynamic systems is considered. The comparative analysis of definitions of synchronization is given and definition of the synchronous decision concerning a part of phase variables is offered. Synchronization conditions concerning the part of phase variables are established. The perspective direction of researches is the development of the combined method of obtaining conditions of synchronization and stability. The results presented in theorems can be applied at the solution of problems of synchronization of the controlled technical systems. The approach considered in the article is based on the theory of stability with respect to a part of phase variables and allows us to obtain conditions of synchronization of various classes of nonlinear systems concerning a part of variables.
Pages: 3-9
References

 

  1. Rumjancev V.V., Oziraner A.S. Ustojjchivost i stabilizacija dvizhenija po otnosheniju k chasti peremennykh. M.: Nauka. 1987.
  2. Vorotnikov V.I. Teorija ustojjchivosti po chasti peremennykh i problema koordinatnojj sinkhronizacii dinamicheskikh sistem // DAN. 2000. T.375. №5. S.622-626.
  3. Blekhman I.I. Sinkhronizacija dinamicheskikh sistem. M.: Nauka. 1971.
  4. Vorotnikov V.I., Rumjancev V.V. Ustojjchivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teorii, metody i prilozhenija. M.: Nauchnyjjmir. 2001.
  5. Leonov G.A.,Smirnova V.B. Matematicheskie problemy teorii fazovojj sinkhronizacii. M.: Nauka. 2000.
  6. Cuomo K., Oppenheim A., Strogatz S. Robustness and signal recovery in a synchronized chaotic system// Int. J. Bifurc. Chaos. 1993. V.3. №8. P.1629-1638.
  7. Blekhman I.I., Landa P.S., Rosemblum M.G. Synchronization and chaotization in inter­acting dynamical system // Appl. Mech. Rev. 1995. V.48. №11. Pt 1. P.733-752.
  8. Nijmeijer H., Blekhman I.I., Fradkov A.L., Pogromsky A.Yu. Self-synchronization and controlled synchronization // System & Control Letters. 1997. V.31. №4-5. P.299-305.
  9. Pecora L.M., Carroll T.L. Synchronization in chaotic systems// Phys. Rev. Lett. 1990. V.64. №8. P.821-824.
  10. Zubov V.I. Dinamika upravljaemykh sistem. Izd-e 2-e, pererab. i dop. SPb: Izd-vo SPbGU. 2004.
  11. SHHennikov V.N.Issledovanie ustojjchivosti po chasti peremennykh differencialnykh sistem s odnorodnymi pravymi chastjami// Differencialnye uravnenija. 1984. T.20. №9. S.1645-1649.
  12.  SHHennikova E.V. Ustojjchivopodobnye svojjstva reshenijj nelinejjnykh upravljaemykh sistem. M.: Izd-vo RUDN. 2006.
  13.  SHHennikova E.V. Issledovanie ustojjchivopodobnykh svojjstv reshenijj nelinejjnykh sistem// Avtomatika i telemekhanika. 2007. №9. S.106-112.
  14. Druzhinina O.V., SHHennikov V.N.,SHHennikova E.V.Uslovija i algoritmy optimalnojj stabilizacii otnositelno chasti peremennykh mnogosvjaznykh nelinejjnykh upravljaemykh sistem// Dinamika slozhnykh sistem. 2012. T.6. №3. S.154-158.