350 rub
Journal Nonlinear World №5 for 2015 г.
Article in number:
Multifractal analysis of stability of natural-technogenic systems using normalized Renyi spectra
Authors:
V.I. Smetanin - Dr. Sc. (Eng.), Professor, Head of Department, Institute of environmental engineering named after A.N. Kostyakov (Moscow). E-mail: smetanin@ yandex..ru A.N. Nasonov - Ph. D. (Eng.), Associate Professor, Institute of environmental engineering named after A.N. Kostyakov (Moscow). E-mail: adn22@yandex.ru I.V. Tsvetkov - Dr. Sc. (Eng.), Professor, Tver State University. E-mail: mamcu@ maii.ru V.P. Tsvetkov - Dr. Sc. (Eng.), Professor, Tver State University. E-mail: tsvet@tversu.ru
Abstract:
Self-organization of natural-technical systems (NTS) under the conditions of anthropogenic influence is considered as sellf-adaptation to the external load, which represents a transition process in the phase space of States in order to minimize the resource maintenance loss. These States are called a structure-attractor, and are calculated using the trends of the TCP parameters. The presence of the attractor (structure-attractor) ensures the convergence of localization of anthropogenic load in the enclosing structure of the ecosystem with the most economical consumption of internal resource to maintain. The heterogeneity of spatial and temporal distribution of anthropogenic load in the structure of PTAs results in stochastic time series that are generated by the competing processes of pollutants of anthropogenic activities and processes of self-purification of natural environment, and will depend on a number of factors, the structure and nature of which are often unknown. However, despite the extreme irregularity of the time series, the behavior of the ecosystem has a relative frequency of occurrence on different scales due to its fractal properties. The fractality creates consistency of behavioral imperatives components of the ecosystem at all levels of its existence, ensuring the highest development of relations of exchange interactions both within the system and with the environment. Fractal models allow us to describe the diversity of States of the title - from simple consistently steady to complex transient, when a tendency to change these States is only a building one. The main characteristic of fractal dimensions of PTAs is its dimension, or a scaling indicator describing the repeatability of the geometry of the time series with scale transformation. The procedure for determining the fractal dimension of PTSD based on the measurement of the lengths of the time series are invariant under scale transformation conditions (fractal curves). Fractal curve on an interval is continuous and nondifferentiable, and its length depends on the scale of average [9]. The calculation result is presented in the form of a phase portrait (State charts) that describes the structure of distributions of fractal dimensions of PTAs at the monitoring point. However, the phase portrait of the title (state diagram) does not account for the structural heterogeneity of the host ecosystem, and essentially is a monofractal describing homogeneous structure of the distribution of fractal dimensions of PTSD at the time of measurement. Note that the ecological status of the TCP is defined in a similar way based on the widely used at present parametric rationing to the MPC, and its derived indices of ecosystem quality. It is obvious that the thus-obtained result is a single one in the space of possible States of the TCP and gives no idea about neither dynamics of the ecosystem, nor stability of its States. Therefore, the goal is to develop a generalized model of the structural dynamics of TCP described using multifractal spectra Renyi, and determining the diversity of the state PTAs in terms of heterogeneity of anthropogenic impacts. This model allows you to present a generalized image (portrait) via TCP multifractal spectra of its parameters and to analyze it from the point of view of specified forms of organizations - States of self-regulation, resource depletion, ecosystems, States and bifurcation structure of the system corresponding to its destruction.
Pages: 59-67
References

 

  1. Dubovikov M.M., Starchenko N.V. EHkonofizika i analiz finansovykh vremennykh rjadov // Sb. EHAI MIFI «EHkonofizika. Sovremennaja fizika v poiskakh ehkonomicheskojj teorii». M. 2007. S. 58−64.
  2. Gelashvili D.B., Rozenberg G.S., Iudin D.I.i dr. Fraktalnye aspekty strukturnojj ustojjchivosti bioticheskikh soobshhestv // Mezhdisciplinarnyjj nauchnyjj i prikladnojj zhurnal «Biosfera». 2013. T. 5. № 2. S. 143−159.
  3. MacArthur R.H. Fluctuations of animal populations and measure of community stability // Ecology. 1955. V. 36. № 7. P. 353−356.
  4. Hurlbert S.H. The nonconcept of species diversity: a critique and alternative parameters // Ecology. V. 52. № 4. P. 577−586.
  5. Benoit B. Mandelbrot A Multifractal Walk Down Wall Street // Scientific American. Feb. 1999. P. 70−73.
  6. Brillouin L. Science and information theory. NewYork: AcademicPress. 1956. 320 p.
  7. Reni A. Trilogija o matematike. M.: Mir. 1980. 376 s.
  8. Franchini F., Its A.R., Korepin V.E. Rényi entropy as a measure of entanglement in quantum spin chain // Journal of Physics A: Math. Theor. 2008. V. 41.P. 025302.
  9. Cvetkov I.V. Ispolzovanie fraktalnykh vremennykh rjadov v kompleksnom analize rechnykh sistem // Sb. nauchnykh trudov «Modelirovanie slozhnykh sistem». Tver: Izd-vo TvGu. 1998. № 1. S. 145−155.
  10. Nasonov A.N., Smetanin V.I. Topologicheskoe modelirovanie prirodno-tekhnogennykh sistem // Prirodoobustrojjstvo. 2013. № 1. S. 11−16.
  11. Kudinov A.N., Tsvetkov V.P., Tsvetkov I.V. Catastrophes in the Multi-Fractal Dynamics of Social-Economic Systems // Russian Journal of Mathematical Physics. 2011. V. 18. № 2. P. 149−155.
  12. Maslovskaja A.G., Osokina T.R., Barabash T.K. Primenenie fraktalnykh metodov dlja analiza dinamicheskikh dannykh // Vestnik Amurskogo gosudarstvennogo universiteta. Ser. Estestv. i ehkon. nauki. 2010. № 51. S. 13−20.
  13. KHabarova E.I., Rozdin I.A., Nikitina S.V., Leonteva S.V. Raschet i ocenka ehkologo-znachimykh parametrov. Uchebno-metodicheskoe posobie. M.: MITKHT. 2010. S. 64.
  14. SanPiN 2.1.5.980-00. Gigienicheskie trebovanija k okhrane poverkhnostnykh vod. 2000. S. 23.